Literatura científica selecionada sobre o tema "Repeat instabilty"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Repeat instabilty".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Repeat instabilty"
Khristich, Alexandra N., e Sergei M. Mirkin. "On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability". Journal of Biological Chemistry 295, n.º 13 (14 de fevereiro de 2020): 4134–70. http://dx.doi.org/10.1074/jbc.rev119.007678.
Texto completo da fonteLin, Yunfu, e John H. Wilson. "Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair". Molecular and Cellular Biology 27, n.º 17 (25 de junho de 2007): 6209–17. http://dx.doi.org/10.1128/mcb.00739-07.
Texto completo da fonteCohen, Haim, Dorothy D. Sears, Drora Zenvirth, Philip Hieter e Giora Simchen. "Increased Instability of Human CTG Repeat Tracts on Yeast Artificial Chromosomes during Gametogenesis". Molecular and Cellular Biology 19, n.º 6 (1 de junho de 1999): 4153–58. http://dx.doi.org/10.1128/mcb.19.6.4153.
Texto completo da fonteBrouwer, Judith Rixt, Aline Huguet, Annie Nicole, Arnold Munnich e Geneviève Gourdon. "Transcriptionally Repressive Chromatin Remodelling and CpG Methylation in the Presence of Expanded CTG-Repeats at the DM1 Locus". Journal of Nucleic Acids 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/567435.
Texto completo da fonteGold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert e Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions". PLOS Genetics 17, n.º 10 (21 de outubro de 2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Texto completo da fonteNeil, Alexander J., Julia A. Hisey, Ishtiaque Quasem, Ryan J. McGinty, Marcin Hitczenko, Alexandra N. Khristich e Sergei M. Mirkin. "Replication-independent instability of Friedreich’s ataxia GAA repeats during chronological aging". Proceedings of the National Academy of Sciences 118, n.º 5 (25 de janeiro de 2021): e2013080118. http://dx.doi.org/10.1073/pnas.2013080118.
Texto completo da fonteCalluori, Stephanie, Rebecca Stark e Brandon L. Pearson. "Gene–Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability". Biomedicines 11, n.º 2 (10 de fevereiro de 2023): 515. http://dx.doi.org/10.3390/biomedicines11020515.
Texto completo da fonteGorbunova, Vera, Andrei Seluanov, Vincent Dion, Zoltan Sandor, James L. Meservy e John H. Wilson. "Selectable System for Monitoring the Instability of CTG/CAG Triplet Repeats in Mammalian Cells". Molecular and Cellular Biology 23, n.º 13 (1 de julho de 2003): 4485–93. http://dx.doi.org/10.1128/mcb.23.13.4485-4493.2003.
Texto completo da fonteJung, Da Eun, e Chul Hyoung Lyoo. "A Spinocerebellar Ataxia Type 6 Patient Caused by <i>De Novo</i> Expansion of Normal Range CAG Repeats". Journal of the Korean Neurological Association 42, n.º 2 (1 de maio de 2024): 150–52. http://dx.doi.org/10.17340/jkna.2023.0105.
Texto completo da fonteSu, Xiaofeng A., e Catherine H. Freudenreich. "Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences 114, n.º 40 (18 de setembro de 2017): E8392—E8401. http://dx.doi.org/10.1073/pnas.1711283114.
Texto completo da fonteTeses / dissertações sobre o assunto "Repeat instabilty"
Pontual, Laure de. "Identification de nouveaux facteurs chimiques capables de moduler l'instabilité des répétitions CTG dans la dystrophie myotonique de type 1". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS198.pdf.
Texto completo da fonteMyotonic dystrophy type 1 (DM1) is the most common dystrophy in adults, with an estimated prevalence of 1:8000 individuals. It is a multisystemic disease characterized by muscle, cardiac, cognitive, and digestive impairments, which contribute to a reduction in both life expectancy and quality of life for patients. DM1 is caused by an abnormal expansion of CTG repeats in the 3'UTR of the DMPK gene. In the general population, the number of repeats is under 35 CTG, whereas in patients, it exceeds 50 CTG and can reach several thousand repeats. As in other diseases caused by repeat expansions, the CTG expansion in DM1 is unstable. The repeat size increases across generations (intergenerational instability) and within tissues during a patient's lifetime (somatic instability). The number of inherited repeats and the level of somatic instability correlate with the age of onset and severity of symptoms. Thus, targeting the mutation itself to stabilize or reduce CTG repeat length is the most promising therapeutic strategy, as it would address all the pathophysiological mechanisms resulting from the mutation.Initially, my thesis work focused on identifying repositioned chemical molecules capable of modulating repeat instability. Screening the 1280 molecules from the Prestwick Chemical Library allowed me to identify 39 candidate molecules that alter the expression of a reporter gene, suggesting they could modulate repeat instability. After directly studying their effect on instability, I excluded four of these molecules that do not modulate repeat expression. I demonstrated that a fifth molecule, clomipramine, can modulate repeat instability in the screening cell model but not in murine and human DM1 fibroblasts.Concurrently, I showed that RGFP966, a selective HDAC3 inhibitor, induced contractions of CTG repeats in murine DM1 fibroblasts with approximately 650 repeats. This effect appears to depend on the dose of RGFP966 or the size of the CTG repeat, as it was not replicated in human DM1 fibroblasts with 350 CTG repeats. An RNA-seq approach in murine cells treated with RGFP966 identified several candidate genes involved in DNA replication as possible modifiers of instability. I also showed a decrease in bidirectional DMPK transcription associated with a probable hypermethylation downstream of the repeats in murine DM1 cells. In conclusion, my data suggest that RGFP966 modulates CTG repeat instability in DM1 through multiple mechanisms, potentially including chromatin structure modification at the DM1 locus and alterations in DNA replication.Overall, my thesis project contributed to the understanding of repeat instability mechanisms and the identification of chemical compounds that modulate instability dynamics. My work also highlighted the limitations of each model used and the complexity of identifying small molecules that alter CTG triplet dynamics in reporter cell models. Additionally, I participated in developing long-read sequencing (with and without amplification) for DM1, providing a rapid and highly informative new tool for the analysis of somatic mosaicism
Gadgil, Rujuta Yashodhan. "Instability at Trinucleotide Repeat DNAs". Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472231204.
Texto completo da fonteUbink-Bontekoe, Carola Jacoba Maria. "CGG repeat instability and FXR proteins". [S.l.] : Rotterdam : [The Author] ; Erasmus University [Host], 2001. http://hdl.handle.net/1765/12091.
Texto completo da fonteBeaver, Jill M. "Trinucleotide Repeat Instability is Modulated by DNA Base Lesions and DNA Base Excision Repair". FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/3056.
Texto completo da fonteUeki, Junko. "Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability". Kyoto University, 2018. http://hdl.handle.net/2433/230991.
Texto completo da fonteSchmidt, Kristina H. "CTG trinucleotide repeat instability in Escherichia coli". Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/14353.
Texto completo da fonteZahra, Rabaab. "CAG.CTG trinucleotide repeat instability in the E.coli chromosome". Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/11667.
Texto completo da fonteChan, Kara Y. "MECHANISMS OF TRINUCLEOTIDE REPEAT INSTABILITY DURING DNA SYNTHESIS". UKnowledge, 2019. https://uknowledge.uky.edu/toxicology_etds/29.
Texto completo da fontePickett, Hilda A. "Molecular characterisation of instability in human telomere repeat arrays". Thesis, University of Leicester, 2002. http://hdl.handle.net/2381/30343.
Texto completo da fonteChan, Nelson Lap Shun. "IDENTIFICATION OF ACTIVITIES INVOLVED IN CAG/CTG REPEAT INSTABILITY". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/832.
Texto completo da fonteLivros sobre o assunto "Repeat instabilty"
1946-, Oostra Ben A., ed. Trinucleotide diseases and instability. Berlin: Springer, 1998.
Encontre o texto completo da fonteHughes, Alis, e Lesley Jones. Pathogenic Mechanisms. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0013.
Texto completo da fonteZeitlin, Vladimir. Rotating Shallow-Water model with Horizontal Density and/or Temperature Gradients. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0014.
Texto completo da fonteMacartney, Huw. The Bank Culture Debate. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198843764.001.0001.
Texto completo da fonteThe Global State of Democracy 2022: Forging Social Contracts in a Time of Discontent. International Institute for Democracy and Electoral Assistance (International IDEA), 2022. http://dx.doi.org/10.31752/idea.2022.56.
Texto completo da fonteHanning, Robert W. Boccaccio, Chaucer, and Stories for an Uncertain World. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192894755.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Repeat instabilty"
Wells, Robert D., Albino Bacolla e Richard P. Bowater. "Instabilities of Triplet Repeats: Factors and Mechanisms". In Trinucleotide Diseases and Instability, 133–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-69680-3_4.
Texto completo da fonteParniewski, Pawel, e Pawel Staczek. "Molecular Mechanisms of TRS Instability". In Triple Repeat Diseases of the Nervous Systems, 1–25. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0117-6_1.
Texto completo da fonteCurtis, J. Willard. "Churning: Repeated Optimization and Cooperative Instability". In Cooperative Systems, 105–16. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4613-0219-3_6.
Texto completo da fonteSalina, E. A., E. G. Pestsova e N. P. Goncharov. "Instability of Subtelomeric Spelt1 Repeats of Wheat Species". In Stadler Genetics Symposia Series, 235–36. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_23.
Texto completo da fontePolleys, Erica J., e Catherine H. Freudenreich. "Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae". In Methods in Molecular Biology, 403–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7306-4_28.
Texto completo da fonteWalker, Catherine A., e Catherine M. Abbott. "Trinucleotide Repeat Instability as a Cause of Human Genetic Disease". In Encyclopedia of Genetics, 396–400. New York: Routledge, 2014. http://dx.doi.org/10.4324/9781315073972-55.
Texto completo da fonteMowbray, Miranda. "Observable Instability for the Repeated Prisoner’s Dilemma". In Approximation, Optimization and Mathematical Economics, 223–34. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-642-57592-1_20.
Texto completo da fonteDeka, Ranjan, e Ranajit Chakraborty. "Trinucleotide Repeats, Genetic Instability and Variation in the Human Genome". In Genomic Diversity, 53–64. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4263-6_4.
Texto completo da fonteLai, Yanhao, Ruipeng Lei, Yaou Ren e Yuan Liu. "Methods to Study Trinucleotide Repeat Instability Induced by DNA Damage and Repair". In Methods in Molecular Biology, 87–101. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9500-4_5.
Texto completo da fonteKobayashi, Takehiko. "Genome Instability of Repetitive Sequence: Lesson from the Ribosomal RNA Gene Repeat". In DNA Replication, Recombination, and Repair, 235–47. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55873-6_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Repeat instabilty"
Akatsuka, T., H. Imai, K. Arai, H. Sakuma, A. Ishizawa, T. Goh, T. Hashimoto et al. "Highly stable laser repeater system with frequency instability below 10-21". In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cfa6g_02.
Texto completo da fonteGrasser, Tibor. "Towards Understanding Negative Bias Temperature Instability". In 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796147.
Texto completo da fonteGrasser, Tibor. "Towards Understanding Negative Bias Temperature Instability". In 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796110.
Texto completo da fonteHensman Moss, Davina, Anupriya Dalmia, Valentina Galassi Deforie, Kristina Ibanez, Sarah J. Tabrizi, Nayana Lahiri, Henry Houlden, Peter Holmans, Lesley Jones e Arianna Tucci. "C12 HTT repeat instability in family trios in the 100,000 genomes project". In EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.56.
Texto completo da fonteZafar, Sufi. "The Negative Bias Temperature Instability in MOS Devices". In 2006 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2006. http://dx.doi.org/10.1109/irws.2006.305255.
Texto completo da fonteHongyu Zhao, Yue Zhao, Rong Chai e Lu Cai. "Instability of the DNA repeats mutation in humans hereditary disorders". In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965950.
Texto completo da fonteLelis, A. J., R. Green, D. Habersat e N. Goldsman. "Effect of Threshold-Voltage Instability on SiC DMOSFET Reliability". In 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796090.
Texto completo da fonteLelis, Aivars, D. Habersat, R. Green e N. Goldsman. "Effect of Threshold-Voltage Instability on SiC DMOSFET Reliability". In 2008 IEEE International Integrated Reliability Workshop Final Report (IRW). IEEE, 2008. http://dx.doi.org/10.1109/irws.2008.4796136.
Texto completo da fonteLelis, A. J., S. Potbhare, D. Habersat, G. Pennington e N. Goldsman. "Modeling and Characterization of Bias Stress-Induced Instability of SiC MOSFETs". In 2006 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2006. http://dx.doi.org/10.1109/irws.2006.305235.
Texto completo da fonteGrasser, Tibor, Paul-Jurgen Wagner, Philipp Hehenberger, Wolfgang Gos e Ben Kaczer. "A rigorous study of measurement techniques for negative bias temperature instability". In 2007 IEEE International Integrated Reliability Workshop Final Report. IEEE, 2007. http://dx.doi.org/10.1109/irws.2007.4469212.
Texto completo da fonteRelatórios de organizações sobre o assunto "Repeat instabilty"
Brunner, Huschenbett e Beshouri. PR-336-06206-R01 Engine Control for Legacy Engines - Cylinder and Cycle Level Control. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maio de 2014. http://dx.doi.org/10.55274/r0010041.
Texto completo da fonteChao, Alex. Very Large Hadron Collider Instability Workshop Summary Report. Office of Scientific and Technical Information (OSTI), abril de 2001. http://dx.doi.org/10.2172/784899.
Texto completo da fonteLahey, R. T. Jr. Analysis of nuclear reactor instability phenomena. Progress report. Office of Scientific and Technical Information (OSTI), março de 1993. http://dx.doi.org/10.2172/10131526.
Texto completo da fonteAluie, Hussein. Final Technical Report: Ablative Magnetohydrodynamic Rayleigh-Taylor Instability. Office of Scientific and Technical Information (OSTI), março de 2023. http://dx.doi.org/10.2172/2311793.
Texto completo da fonteIsmail, Zenobia. Interaction Between Food Prices and Political Instability. Institute of Development Studies (IDS), maio de 2021. http://dx.doi.org/10.19088/k4d.2021.091.
Texto completo da fonteDynan, William S. Final Technical Report - Mechanisms and pathways controlling genomic instability. Office of Scientific and Technical Information (OSTI), maio de 2013. http://dx.doi.org/10.2172/1081424.
Texto completo da fonteDynan, William S. Final report- Links between persistent DNA damage, genome instability, and aging. Office of Scientific and Technical Information (OSTI), novembro de 2016. http://dx.doi.org/10.2172/1333814.
Texto completo da fonteMajda, Andrew J. Report: Low Frequency Predictive Skill Despite Structural Instability and Model Error. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada601429.
Texto completo da fonteMizuno, K., J. S. DeGroot, R. P. Drake e W. Seka. Collective Thomson scattering measurements of the Ion Acoustic Decay Instability. Final report. Office of Scientific and Technical Information (OSTI), dezembro de 1993. http://dx.doi.org/10.2172/10143761.
Texto completo da fonteYoung, P., P. Drake, Estabrook, K. Mizuno e J. S. De Groot. Final report of investigation of the Acoustic Decay Instability in laser plasma interaction. Office of Scientific and Technical Information (OSTI), julho de 1991. http://dx.doi.org/10.2172/6027882.
Texto completo da fonte