Artigos de revistas sobre o tema "Remodelled genes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Remodelled genes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Germain, Adeline, Jeanne-Marie Perotin, Gonzague Delepine, Myriam Polette, Gaëtan Deslée e Valérian Dormoy. "Whole-Exome Sequencing of Bronchial Epithelial Cells Reveals a Genetic Print of Airway Remodelling in COPD". Biomedicines 10, n.º 7 (15 de julho de 2022): 1714. http://dx.doi.org/10.3390/biomedicines10071714.
Texto completo da fonteLi, Mengyao, Su Mon Aye, Maizbha Uddin Ahmed, Mei-Ling Han, Chen Li, Jiangning Song, John D. Boyce et al. "Pan-transcriptomic analysis identified common differentially expressed genes of Acinetobacter baumannii in response to polymyxin treatments". Molecular Omics 16, n.º 4 (2020): 327–38. http://dx.doi.org/10.1039/d0mo00015a.
Texto completo da fonteOu, Yaqing, e James O. McInerney. "Eukaryote Genes Are More Likely than Prokaryote Genes to Be Composites". Genes 10, n.º 9 (28 de agosto de 2019): 648. http://dx.doi.org/10.3390/genes10090648.
Texto completo da fonteKuleesha, Yadav, Wee Choo Puah e Martin Wasser. "A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis". Royal Society Open Science 3, n.º 2 (fevereiro de 2016): 150517. http://dx.doi.org/10.1098/rsos.150517.
Texto completo da fonteWang, Yuzhe, Shiyu Li, Mengge Liu, Jiajia Wang, Zhengbin Fei, Feng Wang, Zhenyou Jiang, Wenhua Huang e Hanxiao Sun. "Rhodosporidium toruloides sir2-like genes remodelled the mitochondrial network to improve the phenotypes of ageing cells". Free Radical Biology and Medicine 134 (abril de 2019): 64–75. http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.036.
Texto completo da fonteAhmedien, Diaa Ahmed Mohamed. "Bio-pixels: A stem cell-based interactive–generative interface designed to redefine technologies of self-making in new media arts". Convergence: The International Journal of Research into New Media Technologies 26, n.º 5-6 (29 de novembro de 2019): 1367–90. http://dx.doi.org/10.1177/1354856519890096.
Texto completo da fonteDalla Torre, Marco, Daniele Pittari, Alessandra Boletta, Laura Cassina, Roberto Sitia e Tiziana Anelli. "Mitochondria remodeling during endometrial stromal cell decidualization". Life Science Alliance 7, n.º 12 (4 de outubro de 2024): e202402627. http://dx.doi.org/10.26508/lsa.202402627.
Texto completo da fonteReik, Wolf, Fatima Santos, Kohzoh Mitsuya, Hugh Morgan e Wendy Dean. "Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment?" Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 358, n.º 1436 (29 de agosto de 2003): 1403–9. http://dx.doi.org/10.1098/rstb.2003.1326.
Texto completo da fonteChen, Xinxin, Jun Wang, Donna Woltring, Steve Gerondakis e M. Frances Shannon. "Histone Dynamics on the Interleukin-2 Gene in Response to T-Cell Activation". Molecular and Cellular Biology 25, n.º 8 (15 de abril de 2005): 3209–19. http://dx.doi.org/10.1128/mcb.25.8.3209-3219.2005.
Texto completo da fontePRAJAPATI, SURENDRA K., RICHARD CULLETON e OM P. SINGH. "Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families". Parasitology 141, n.º 12 (30 de julho de 2014): 1533–43. http://dx.doi.org/10.1017/s0031182014000948.
Texto completo da fonteBoudin, Eveline, e Wim Van Hul. "MECHANISMS IN ENDOCRINOLOGY: Genetics of human bone formation". European Journal of Endocrinology 177, n.º 2 (agosto de 2017): R69—R83. http://dx.doi.org/10.1530/eje-16-0990.
Texto completo da fonteWood, W., M. Turmaine, R. Weber, V. Camp, R. A. Maki, S. R. McKercher e P. Martin. "Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos". Development 127, n.º 24 (15 de dezembro de 2000): 5245–52. http://dx.doi.org/10.1242/dev.127.24.5245.
Texto completo da fonteFarrell, K., K. Uh e K. Lee. "45 Expression patterns of PRDM family genes in porcine pre-implantation embryos". Reproduction, Fertility and Development 32, n.º 2 (2020): 148. http://dx.doi.org/10.1071/rdv32n2ab45.
Texto completo da fontePaino, Francesca, Marcella La Noce, Alessandra Giuliani, Alfredo De Rosa, Serena Mazzoni, Luigi Laino, Evzen Amler, Gianpaolo Papaccio, Vincenzo Desiderio e Virginia Tirino. "Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering". Clinical Science 131, n.º 8 (6 de abril de 2017): 699–713. http://dx.doi.org/10.1042/cs20170047.
Texto completo da fonteBen-Aicha, Soumaya, Rafael Escate, Laura Casaní, Teresa Padró, Esther Peña, Gemma Arderiu, Guiomar Mendieta, Lina Badimón e Gemma Vilahur. "High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1α expression in a preclinical animal model". Cardiovascular Research 116, n.º 7 (30 de agosto de 2019): 1288–99. http://dx.doi.org/10.1093/cvr/cvz239.
Texto completo da fonteVINCENTI, Matthew P., Charles I. COON, J. Andrew MENGSHOL, Sue YOCUM, Peter MITCHELL e Constance E. BRINCKERHOFF. "Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)". Biochemical Journal 331, n.º 1 (1 de abril de 1998): 341–46. http://dx.doi.org/10.1042/bj3310341.
Texto completo da fonteKoenning, Matthias, Xianlong Wang, Menuka Karki, Rahul Kumar Jangid, Sarah Kearns, Durga Nand Tripathi, Michael Cianfrocco et al. "Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice". Brain 144, n.º 8 (20 de maio de 2021): 2527–40. http://dx.doi.org/10.1093/brain/awab200.
Texto completo da fonteCiciarello, Marilena, Francesca Girotti, Darina Ocadlikova, Letizia Zannoni, Federica Ardizzoia, Cecilia Evangelisti, Cesare Rossi, Michele Cavo e Antonio Curti. "Interferon-Gamma Production By Dysplastic Cells Supports an Immune-Tolerant Bone Marrow Microenvironment in Myelodysplastic Syndrome Patients". Blood 144, Supplement 1 (5 de novembro de 2024): 6687. https://doi.org/10.1182/blood-2024-203447.
Texto completo da fonteFarrell, Jeffrey A., e Patrick H. O'Farrell. "From Egg to Gastrula: How the Cell Cycle Is Remodeled During theDrosophilaMid-Blastula Transition". Annual Review of Genetics 48, n.º 1 (23 de novembro de 2014): 269–94. http://dx.doi.org/10.1146/annurev-genet-111212-133531.
Texto completo da fonteNorton, Kacie A., Ross Humphreys, Chelsey Weatherill, Kevin Duong, Vivian V. Nguyen, Arun Kommadath, Farshad Niri, Paul Stothard e Heather E. McDermid. "Subfertility in young male mice mutant for chromatin remodeller CECR2". Reproduction 163, n.º 2 (1 de fevereiro de 2022): 69–83. http://dx.doi.org/10.1530/rep-19-0507.
Texto completo da fonteGonzález-Medina, Alberto, Esther Pazo, Elena Hidalgo e José Ayté. "SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes". Cell Cycle 20, n.º 24 (29 de novembro de 2021): 2652–61. http://dx.doi.org/10.1080/15384101.2021.2008203.
Texto completo da fonteLoesch, Robin, Linda Chenane e Sabine Colnot. "ARID2 Chromatin Remodeler in Hepatocellular Carcinoma". Cells 9, n.º 10 (23 de setembro de 2020): 2152. http://dx.doi.org/10.3390/cells9102152.
Texto completo da fontePoli, Jérôme, Susan M. Gasser e Manolis Papamichos-Chronakis. "The INO80 remodeller in transcription, replication and repair". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1731 (28 de agosto de 2017): 20160290. http://dx.doi.org/10.1098/rstb.2016.0290.
Texto completo da fonteSoutourina, Julie, Véronique Bordas-Le Floch, Gabrielle Gendrel, Amando Flores, Cécile Ducrot, Hélène Dumay-Odelot, Pascal Soularue et al. "Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases". Molecular and Cellular Biology 26, n.º 13 (1 de julho de 2006): 4920–33. http://dx.doi.org/10.1128/mcb.00415-06.
Texto completo da fonteSubtil-Rodríguez, Alicia, Elena Vázquez-Chávez, María Ceballos-Chávez, Manuel Rodríguez-Paredes, José I. Martín-Subero, Manel Esteller e José C. Reyes. "The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes". Nucleic Acids Research 42, n.º 4 (20 de novembro de 2013): 2185–96. http://dx.doi.org/10.1093/nar/gkt1161.
Texto completo da fonteChutani, Namita, Sandhya Ragula, Khajamohiddin Syed e Suresh B. Pakala. "Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer". Biomolecules 13, n.º 10 (15 de outubro de 2023): 1527. http://dx.doi.org/10.3390/biom13101527.
Texto completo da fonteSong, Yawei, Zhengyu Liang, Jie Zhang, Gongcheng Hu, Juehan Wang, Yaoyi Li, Rong Guo et al. "CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming". Cell Reports 39, n.º 1 (abril de 2022): 110626. http://dx.doi.org/10.1016/j.celrep.2022.110626.
Texto completo da fonteYao, Wei, Devin A. King, Sean L. Beckwith, Graeme J. Gowans, Kuangyu Yen, Coral Zhou e Ashby J. Morrison. "The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation". Molecular and Cellular Biology 36, n.º 6 (11 de janeiro de 2016): 979–91. http://dx.doi.org/10.1128/mcb.00801-15.
Texto completo da fonteBogliotti, Y. S., L. B. Ferré, D. J. Humpal e P. J. Ross. "68 EPIGENETIC REMODELING OF HISTONE 3 MARKS DURING BOVINE PRE-IMPLANTATION DEVELOPMENT". Reproduction, Fertility and Development 26, n.º 1 (2014): 148. http://dx.doi.org/10.1071/rdv26n1ab68.
Texto completo da fonteChohra, Ilyas, Keshi Chung, Subhajit Giri e Brigitte Malgrange. "ATP-Dependent Chromatin Remodellers in Inner Ear Development". Cells 12, n.º 4 (7 de fevereiro de 2023): 532. http://dx.doi.org/10.3390/cells12040532.
Texto completo da fonteYu, Xiaoming, Xinchao Meng, Yutong Liu, Ning Li, Ai Zhang, Tian-Jing Wang, Lili Jiang et al. "The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize". Plant Molecular Biology 97, n.º 4-5 (28 de junho de 2018): 451–65. http://dx.doi.org/10.1007/s11103-018-0751-8.
Texto completo da fonteMorillon, Antonin. "Is histone loss a common feature of DNA metabolism regulation?This paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 84, n.º 4 (agosto de 2006): 450–52. http://dx.doi.org/10.1139/o06-070.
Texto completo da fonteFeng, Ying, Yan Zhang, Zhiqing Lin, Xiaolei Ye, Xue Lin, Lixiu Lv, Yi Lin, Shenfei Sun, Yun Qi e Xinhua Lin. "Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development". PLOS Genetics 18, n.º 9 (27 de setembro de 2022): e1010395. http://dx.doi.org/10.1371/journal.pgen.1010395.
Texto completo da fonteGidh-Jain, Madhavi, Boyu Huang, Praveer Jain e Nabil El-Sherif. "Differential Expression of Voltage-Gated K+Channel Genes in Left Ventricular Remodeled Myocardium After Experimental Myocardial Infarction". Circulation Research 79, n.º 4 (outubro de 1996): 669–75. http://dx.doi.org/10.1161/01.res.79.4.669.
Texto completo da fontePadilla-Benavides, Teresita, Monserrat Olea-Flores, Tapan Sharma, Sabriya A. Syed, Hanna Witwicka, Miriam D. Zuñiga-Eulogio, Kexin Zhang, Napoleon Navarro-Tito e Anthony N. Imbalzano. "Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation". International Journal of Molecular Sciences 24, n.º 14 (9 de julho de 2023): 11256. http://dx.doi.org/10.3390/ijms241411256.
Texto completo da fonteCauston, Helen C., Bing Ren, Sang Seok Koh, Christopher T. Harbison, Elenita Kanin, Ezra G. Jennings, Tong Ihn Lee, Heather L. True, Eric S. Lander e Richard A. Young. "Remodeling of Yeast Genome Expression in Response to Environmental Changes". Molecular Biology of the Cell 12, n.º 2 (fevereiro de 2001): 323–37. http://dx.doi.org/10.1091/mbc.12.2.323.
Texto completo da fonteMuñoz, Sofía, Francesca Passarelli e Frank Uhlmann. "Conserved roles of chromatin remodellers in cohesin loading onto chromatin". Current Genetics 66, n.º 5 (10 de abril de 2020): 951–56. http://dx.doi.org/10.1007/s00294-020-01075-x.
Texto completo da fonteReddy, B. Ashok, Prashanth Kumar Bajpe, Andrew Bassett, Yuri M. Moshkin, Elena Kozhevnikova, Karel Bezstarosti, Jeroen A. A. Demmers, Andrew A. Travers e C. Peter Verrijzer. "Drosophila Transcription Factor Tramtrack69 Binds MEP1 To Recruit the Chromatin Remodeler NuRD". Molecular and Cellular Biology 30, n.º 21 (23 de agosto de 2010): 5234–44. http://dx.doi.org/10.1128/mcb.00266-10.
Texto completo da fonteZhang, Heng, Brett Bishop, Whitney Ringenberg, William M. Muir e Joe Ogas. "The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 27". Plant Physiology 159, n.º 1 (27 de março de 2012): 418–32. http://dx.doi.org/10.1104/pp.112.194878.
Texto completo da fontePoupeau, Audrey, Christian Garde, Karolina Sulek, Kiymet Citirikkaya, Jonas T. Treebak, Manimozhiyan Arumugam, David Simar, Louise E. Olofsson, Fredrik Bäckhed e Romain Barrès. "Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ‐free mice". FASEB Journal 33, n.º 2 (10 de outubro de 2018): 2719–31. http://dx.doi.org/10.1096/fj.201800787r.
Texto completo da fonteMelvin, Andrew, Sharon Mudie e Sonia Rocha. "The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH". Molecular Biology of the Cell 22, n.º 21 (novembro de 2011): 4171–81. http://dx.doi.org/10.1091/mbc.e11-02-0163.
Texto completo da fonteCrosswhite, Patrick L. "ATP-dependent chromatin remodeling complexes in embryonic vascular development and hypertension". American Journal of Physiology-Heart and Circulatory Physiology 317, n.º 3 (1 de setembro de 2019): H575—H580. http://dx.doi.org/10.1152/ajpheart.00147.2019.
Texto completo da fonteZhao, Haixin, Zhijun Han, Xinyuan Liu, Junjie Gu, Fan Tang, Gang Wei e Ying Jin. "The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes". Journal of Biological Chemistry 292, n.º 20 (15 de março de 2017): 8507–19. http://dx.doi.org/10.1074/jbc.m116.770248.
Texto completo da fonteLi, Shitao, Lingyan Wang, Michael Berman e Martin Dorf. "Mapping a dynamic innate immunity protein interaction network regulating type I interferon production (108.2)". Journal of Immunology 188, n.º 1_Supplement (1 de maio de 2012): 108.2. http://dx.doi.org/10.4049/jimmunol.188.supp.108.2.
Texto completo da fonteWalter, Korden, Constanze Bonifer e Hiromi Tagoh. "Stem cell–specific epigenetic priming and B cell–specific transcriptional activation at the mouse Cd19 locus". Blood 112, n.º 5 (1 de setembro de 2008): 1673–82. http://dx.doi.org/10.1182/blood-2008-02-142786.
Texto completo da fonteSperlazza, Justin, Mohamed Rahmani, Jason Beckta, Mandy Aust, Elisa Hawkins, Shou Zhen Wang, Sheng Zu Zhu et al. "Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation". Blood 126, n.º 12 (17 de setembro de 2015): 1462–72. http://dx.doi.org/10.1182/blood-2015-03-631606.
Texto completo da fonteQiu, Hongfang, Emily Biernat, Chhabi K. Govind, Yashpal Rawal, Răzvan V. Chereji, David J. Clark e Alan G. Hinnebusch. "Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast". Nucleic Acids Research 48, n.º 15 (14 de julho de 2020): 8408–30. http://dx.doi.org/10.1093/nar/gkaa571.
Texto completo da fonteTakahashi, I., M. Nishimura, K. Onodera, J. W. Bae, H. Mitani, M. Okazaki, Y. Sasano e H. Mitani. "Expression of MMP-8 and MMP-13 Genes in the Periodontal Ligament during Tooth Movement in Rats". Journal of Dental Research 82, n.º 8 (agosto de 2003): 646–51. http://dx.doi.org/10.1177/154405910308200815.
Texto completo da fonteZhang, Lijun, Zhenning Dai, Shanshan Shi, Zi Yan, Jiaxin Yang, Wanting Xue, Yunhao He et al. "SIRT3 and SIRT4 double-genes remodeled the mitochondrial network to induce hepatocellular carcinoma cell line differentiation and suppress malignant phenotypes". Biochemical Pharmacology 223 (maio de 2024): 116168. http://dx.doi.org/10.1016/j.bcp.2024.116168.
Texto completo da fonteIacobas, Dumitru Andrei, Ehiguese Alade Obiomon e Sanda Iacobas. "Genomic Fabrics of the Excretory System’s Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma". Current Issues in Molecular Biology 45, n.º 12 (24 de novembro de 2023): 9471–99. http://dx.doi.org/10.3390/cimb45120594.
Texto completo da fonte