Literatura científica selecionada sobre o tema "Reliability of mechanical systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Reliability of mechanical systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Reliability of mechanical systems"
Manshin, Yu P., e E. Yu Manshina. "Reliability in mechanical systems projects". Journal of Physics: Conference Series 2131, n.º 2 (1 de dezembro de 2021): 022029. http://dx.doi.org/10.1088/1742-6596/2131/2/022029.
Texto completo da fonteMoss, T. R., e J. D. Andrews. "Reliability Assessment of Mechanical Systems". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 210, n.º 3 (outubro de 1996): 205–16. http://dx.doi.org/10.1243/pime_proc_1996_210_315_02.
Texto completo da fonteChegodaev, D. E., e V. N. Samsonov. "Evaluating the reliability of mechanical systems". Strength of Materials 19, n.º 12 (dezembro de 1987): 1720–23. http://dx.doi.org/10.1007/bf01523136.
Texto completo da fonteBen-Haim, Yakov. "Non-Probabilistic Reliability of Mechanical Systems". IFAC Proceedings Volumes 27, n.º 5 (junho de 1994): 281–86. http://dx.doi.org/10.1016/s1474-6670(17)48041-4.
Texto completo da fonteBernstein, N. "Reliability analysis techniques for mechanical systems". Quality and Reliability Engineering International 1, n.º 4 (outubro de 1985): 235–48. http://dx.doi.org/10.1002/qre.4680010405.
Texto completo da fonteKwak, Byung Man. "1704 Algorithms in reliability analysis and optimization for structural and mechanical systems". Proceedings of The Computational Mechanics Conference 2005.18 (2005): 125–26. http://dx.doi.org/10.1299/jsmecmd.2005.18.125.
Texto completo da fonteIvanović, Miloš. "Reliability Distribution in Mechanical Systems for Given Reliability and Cost". Advanced Materials Research 633 (janeiro de 2013): 301–11. http://dx.doi.org/10.4028/www.scientific.net/amr.633.301.
Texto completo da fonteAvontuur, G. C., e K. van der Werff. "Systems reliability analysis of mechanical and hydraulic drive systems". Reliability Engineering & System Safety 77, n.º 2 (agosto de 2002): 121–30. http://dx.doi.org/10.1016/s0951-8320(02)00039-x.
Texto completo da fonteLv, H., e Y. Zhang. "Gradual reliability analysis of mechanical component systems". Materials Research Innovations 18, sup1 (março de 2014): S1–29—S1–32. http://dx.doi.org/10.1179/1432891713z.000000000349.
Texto completo da fonteTelyshev, D. V. "Mechanical Circulatory Support Systems Reliability Prediction and Assessment". Proceedings of Universities. ELECTRONICS 25, n.º 1 (fevereiro de 2020): 58–68. http://dx.doi.org/10.24151/1561-5405-2020-25-1-58-68.
Texto completo da fonteTeses / dissertações sobre o assunto "Reliability of mechanical systems"
Stephenson, John Antony. "Design for reliability in mechanical systems". Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/251589.
Texto completo da fonteZhao, Jian-Hua. "The reliability optimization of mechanical systems using metaheuristic approach". Mémoire, École de technologie supérieure, 2005. http://espace.etsmtl.ca/326/1/ZHAO_Jian%2DHua.pdf.
Texto completo da fonteCampean, Ioan Felician. "Product reliability analysis and prediction : applications to mechanical systems". Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714448.
Texto completo da fontePu, Jun. "Reliability and availability analysis of three-state device systems". Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/10384.
Texto completo da fonteAnude, Okezie. "The analysis of redundant reliability systems with common-cause failures". Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6847.
Texto completo da fonteBurnham, Michael Richard. "Three competing risk problems in the study of mechanical systems reliability". Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16853.
Texto completo da fonteCrk, Vladimir 1958. "Component and system reliability assessment from degradation data". Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282820.
Texto completo da fonteAzarkhail, Mohammadreza. "Agent autonomy approach to physics-based reliability modeling of structures and mechanical systems". College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7680.
Texto completo da fonteThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wei, Frank L. (Frank Lili) 1977. "Effects of mechanical properties on the reliability of Cu/low-k metallization systems". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42026.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaves 211-217).
Cu and low-dielectric-constant (k) metallization schemes are critical for improved performance of integrated circuits. However, low elastic moduli, a characteristic of the low-k materials, lead to significant reliability degradation in Cu-interconnects. A thorough understanding of the effects of mechanical properties on electromigration induced failures is required for accurate reliability assessments. During electromigration inside Cu-interconnects, a change in atomic concentration correlates with a change in stress through the effective bulk modulus of the materials system, B, which decreases as the moduli of low-k materials used as inter-level dielectrics (ILDs) decrease. This property is at the core of discussions on electromigration-induced failures by all mechanisms. B is computed using finite element modeling analyses, using experimentally determined mechanical properties of the individual constituents. Characterization techniques include nanoindentation, cantilever deflection, and pressurized membrane deflection for elastic properties measurements, and chevron-notched double-cantilever pull structures for adhesion measurements. The dominant diffusion path in Cu-interconnects is the interface between Cu and the capping layer, which is currently a Si3N4-based film. We performed experiments on Cu-interconnect segments to investigate the kinetics of electromigration. A steady resistance increase over time prior to open-circuit failure, a result of void growth, correlates with the electromigration drift velocity. Diffusive measurements made in this fashion are more fundamental than lifetime measurements alone, and correlate with the combined effects of the electron wind and the back stress forces during electromigration induced void growth.
(cont.)Using this method, the electromigration activation energy was determined to be 0.80±0.06eV. We conducted experiments using Cu-interconnects with different lengths to study line length effects. Although a reliability improvement is observed as the segment length decreases, there is no deterministic current-density line-length product, jL, for which all segments are immortal. This is because small, slit-like voids forming directly below vias will cause open-failures in Cu-interconnects. Therefore, the probabilistic jLcrit values obtained from via-above type nterconnects approximate the thresholds for void nucleation. The fact that jLcrit,nuc monotonically decreases with B results from an energy balance between the strain energy released and surface energy cost for void nucleation and the critical stress required for void nucleation is proportional to B. We also performed electromigration experiments using Cu/low-k interconnect trees to investigate the effects of active atomic sinks and reservoirs on interconnect reliability. In all cases, failures were due to void growth. Kinetic parameters were extracted to be ... Quantitative analysis demonstrates that the reliability of the failing segments is modulated by the evolution of stress in the whole interconnect tree. During this process, not only the diffusive parameters but also B play critical roles. However, as B decreases, the positive effects of reservoirs on reliability are diminished, while the negative effects of sinks on reliability are amplified.
(cont.) Through comprehensive failure analyses, we also successfully identified the mechanism of electromigration-induced extrusions in Cu/low-k interconnects to be nearmode-I interfacial fracture between the Si3N4-based capping layer and the metallization/ILD layer below. The critical stress required for extrusion is found to depend not only on B but also on the layout and dimensions of the interconnects. As B decreases, sparsely packed, wide interconnects are most prone to extrusion-induced failures. Altogether, this research accounts for the effects of mechanical properties on all mechanisms of failure due to electromigration. The results provide an improved experimental basis for accurate circuit-level, layout-specific reliability assessments.
by Frank LiLi Wei.
Ph.D.
Singh, Naveen Chandra Lall Pradeep. "Thermo-mechanical reliability models for life prediction of area array electronics in extreme environments". Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/SINGH_NAVEEN_54.pdf.
Texto completo da fonteLivros sobre o assunto "Reliability of mechanical systems"
Woo, Seongwoo. Reliability Design of Mechanical Systems. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-7236-0.
Texto completo da fonteWoo, Seongwoo. Reliability Design of Mechanical Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50829-0.
Texto completo da fonte1926-, Davidson J. F., e Hunsley Cathy, eds. The Reliability of mechanical systems. 2a ed. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1994.
Encontre o texto completo da fonteF, Davidson J., ed. The Reliability of mechanical systems. London: Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1988.
Encontre o texto completo da fonte1926-, Davidson J. F., Hunsley Cathy e Institution of Mechanical Engineers, eds. The reliability of mechanical systems. 2a ed. London: Mechanical Engineering for the Institution of Mechanical Engineers, 1994.
Encontre o texto completo da fonteTitenok, Aleksandr, V. Sidoro e A. V. Kirichek. Ensuring the operational reliability of mechanical systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1096388.
Texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Mechanical system reliability for long life space systems: Final report. Nashville, Tenn: Dept. of Mechanical Engineering, Vanderbilt University, 1994.
Encontre o texto completo da fonteDaniels, B. K. Achieving Safety and Reliability with Computer Systems. Dordrecht: Springer Netherlands, 1987.
Encontre o texto completo da fonteE, Cabrera, Vela Antonio F e International Course on Improving Efficiency and Reliability in Water Distribution Systems (1994 : Valencia, Spain), eds. Improving efficiency and reliability in water distribution systems. Dordrecht: Kluwer Academic Publishers, 1995.
Encontre o texto completo da fonteMahadevan, Sankaran. Multidisciplinary system reliability analysis. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Reliability of mechanical systems"
El Hami, Abdelkhalak, e Bouchaïb Radi. "Reliability in Mechanical Systems". In Uncertainty and Optimization in Structural Mechanics, 17–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118711903.ch2.
Texto completo da fonteWoo, Seongwoo. "Mechanical System Failures". In Reliability Design of Mechanical Systems, 139–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_6.
Texto completo da fonteWoo, Seongwoo. "Mechanical System Failures". In Reliability Design of Mechanical Systems, 249–306. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_7.
Texto completo da fonteCarter, A. D. S. "System or equipment reliability". In Mechanical Reliability, 331–45. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-18478-1_11.
Texto completo da fonteGrynchenko, Oleksandr, e Oleksiy Alfyorov. "Prediction of System Reliability". In Mechanical Reliability, 69–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41564-8_4.
Texto completo da fonteWoo, Seongwoo. "Fluid Motion and Mechanical Vibration". In Reliability Design of Mechanical Systems, 205–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_6.
Texto completo da fonteZhang, Yu, Zhuo Wang e Yanhui Wang. "Reliability Analysis of Complex Mechanical Systems". In Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021, 354–61. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9913-9_40.
Texto completo da fonteBen-Haim, Yakov. "Robust Reliability of Static Systems". In Robust Reliability in the Mechanical Sciences, 31–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61154-4_3.
Texto completo da fonteWoo, Seongwoo. "Modern Definitions in Reliability Engineering". In Reliability Design of Mechanical Systems, 35–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50829-0_3.
Texto completo da fonteWoo, Seongwoo. "Modern Definitions in Reliability Engineering". In Reliability Design of Mechanical Systems, 53–99. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7236-0_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Reliability of mechanical systems"
Abdelkhalakl, El Hami, e ITMI Mhamed. "Reliability of Mechanical System of Systems". In 5th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center (AIRCC), 2018. http://dx.doi.org/10.5121/csit.2018.80410.
Texto completo da fonteTadigadapa, Srinivas, e Nader Najafi. "Reliability of micro-electro-mechanical systems (MEMS)". In Micromachining and Microfabrication, editado por Rajeshuni Ramesham. SPIE, 2001. http://dx.doi.org/10.1117/12.443002.
Texto completo da fonteHassan, Maguid H. M. "Reliability Evaluation of Smart Structural Systems". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79125.
Texto completo da fonteFarley, D., A. Dasgupta, M. Al-Bassyiouni e J. W. C. de Vries. "System-Level Reliability Qualification of Complex Electronic Systems". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11762.
Texto completo da fonteXu, Shuzhen, e Enrique A. Susemihl. "Reliability Analysis of Water Mist Systems". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41046.
Texto completo da fonteXU, Wenkai, Jiankang SUN, Bo FAN e Kunming HONG. "Dynamic Reliability Evaluation of Complex Mechanical System". In The 2015 International Conference on Mechanical Engineering and Control Systems (MECS2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814740616_0011.
Texto completo da fonteRekvava, Paata. "Seismic Reliability Analysis of Structural Systems". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10686.
Texto completo da fonteLall, Pradeep, Robert Hinshaw, Ranjit Pandher, Mahendra Harsha e Jeff Suhling. "Thermo-mechanical reliability of SAC leadfree alloys". In 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2010. http://dx.doi.org/10.1109/itherm.2010.5501303.
Texto completo da fonteYin, Chang, Wei Dai e Yuanxing Huang. "Reliability Improvement of mechanical components based on TRIZ". In 2015 First International Conference on Reliability Systems Engineering (ICRSE). IEEE, 2015. http://dx.doi.org/10.1109/icrse.2015.7366463.
Texto completo da fonteAugusti, G., M. Ciampoli e F. Petrini. "Reliability of Structural Systems Under Wind Action". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12357.
Texto completo da fonteRelatórios de organizações sobre o assunto "Reliability of mechanical systems"
Poerner. PR-015-11211-R02 Mechanical Seal Auxiliary Systems Best Practices Summary. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 2014. http://dx.doi.org/10.55274/r0010817.
Texto completo da fontePoerner. PR-015-11211-R01 Mechanical Seal Auxiliary Systems Guideline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), outubro de 2013. http://dx.doi.org/10.55274/r0010789.
Texto completo da fonteN. Ramirez. Reliability Analysis of the Mechanical System in Selected Portions of the Nuclear HVAC System. Office of Scientific and Technical Information (OSTI), março de 2005. http://dx.doi.org/10.2172/850443.
Texto completo da fonteGroeneveld, Andrew B., Stephanie G. Wood e Edgardo Ruiz. Estimating Bridge Reliability by Using Bayesian Networks. Engineer Research and Development Center (U.S.), fevereiro de 2021. http://dx.doi.org/10.21079/11681/39601.
Texto completo da fonteCox, James V., Sam A. Candelaria, Michael Thomas Dugger, Michelle Ann Duesterhaus, Danelle Mary Tanner, Shannon J. Timpe, James Anthony Ohlhausen et al. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS). Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/923082.
Texto completo da fonteLozev. L52022 Validation of Current Approaches for Girth Weld Defect Sizing Accuracy. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julho de 2002. http://dx.doi.org/10.55274/r0011325.
Texto completo da fonteTehrani, Fariborz M., Kenneth L. Fishman e Farmehr M. Dehkordi. Extending the Service-Life of Bridges using Sustainable and Resilient Abutment Systems: An Experimental Approach to Electrochemical Characterization of Lightweight Mechanically Stabilized Earth. Mineta Transportation Institute, julho de 2023. http://dx.doi.org/10.31979/mti.2023.2225.
Texto completo da fonteSadlon, Richard J. Mechanical Applications in Reliability Engineering. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1993. http://dx.doi.org/10.21236/ada363860.
Texto completo da fonteMcHenry, K. D., e B. G. Koepke. Mechanical Reliability of Piezoelectric and Dielectric Ceramics. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada198458.
Texto completo da fonteJadaan, Osama M., e Andrew A. Wereszczak. Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs. Office of Scientific and Technical Information (OSTI), maio de 2009. http://dx.doi.org/10.2172/953658.
Texto completo da fonte