Artigos de revistas sobre o tema "Reinforcing bars Fatigue"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Reinforcing bars Fatigue".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kopas, Peter, Lenka Jakubovičová, Milan Vaško e Marián Handrik. "Fatigue Resistance of Reinforcing Steel Bars". Procedia Engineering 136 (2016): 193–97. http://dx.doi.org/10.1016/j.proeng.2016.01.196.
Texto completo da fonteWang, Wei, Jie Chen, Bo Diao, Xuefei Guan, Jingjing He e Min Huang. "Bayesian Fatigue Life Prediction of Corroded Steel Reinforcing Bars". Advances in Civil Engineering 2021 (28 de dezembro de 2021): 1–15. http://dx.doi.org/10.1155/2021/4632152.
Texto completo da fonteHyland, C. W. K., e A. Ouwejan. "Fatigue of reinforcing bars during hydro-demolition". Journal of Physics: Conference Series 843 (maio de 2017): 012033. http://dx.doi.org/10.1088/1742-6596/843/1/012033.
Texto completo da fonteLi, Shibin, Hongwei Tang, Qiang Gui e Zhongguo John Ma. "Fatigue behavior of naturally corroded plain reinforcing bars". Construction and Building Materials 152 (outubro de 2017): 933–42. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.173.
Texto completo da fonteSchwarzkopf, Michael. "Fatigue Design of Tack-Welded Mesh Reinforcing Bars". Structural Engineering International 5, n.º 2 (maio de 1995): 102–6. http://dx.doi.org/10.2749/101686695780601240.
Texto completo da fonteReal, Enrique, Cristina Rodríguez, A. Fernández Canteli e F. Javier Belzunce. "Influence of the Shot Peening Process on the Fatigue Behaviour of Duplex Stainless Steel Reinforcing Bars". Materials Science Forum 539-543 (março de 2007): 4981–86. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4981.
Texto completo da fonteKoulouris, Konstantinos F., e Charis Apostolopoulos. "Fatigue damage indicator of different types of reinforcing bars". International Journal of Structural Integrity 13, n.º 4 (28 de março de 2022): 632–48. http://dx.doi.org/10.1108/ijsi-10-2019-0103.
Texto completo da fonteLi, Shibin. "Fatigue of Reinforcing Steel Bars Subjected to Natural Corrosion". Open Civil Engineering Journal 5, n.º 1 (29 de abril de 2011): 69–74. http://dx.doi.org/10.2174/1874149501105010069.
Texto completo da fonteZhuang, Chenxu, Jinquan Zhang e Ruinian Jiang. "Fatigue Flexural Performance of Short-Span Reinforced Concrete T-Beams Considering Overloading Effect". Baltic Journal of Road and Bridge Engineering 15, n.º 2 (25 de junho de 2020): 89–110. http://dx.doi.org/10.7250/bjrbe.2020-15.474.
Texto completo da fonteIslam, M. A. "Essential Mechanical Properties of Structural Steels for Steel Reinforced Buildings in the Earthquake Sensitive Areas". Journal of Scientific Research 4, n.º 1 (23 de dezembro de 2011): 51. http://dx.doi.org/10.3329/jsr.v4i1.7069.
Texto completo da fonteD'Antino, Tommaso, Marco A. Pisani e Carlo Poggi. "Fatigue tensile testing of glass fiber-reinforced polymer reinforcing bars". Construction and Building Materials 346 (setembro de 2022): 128395. http://dx.doi.org/10.1016/j.conbuildmat.2022.128395.
Texto completo da fonteApostolopoulos, Charis, George Konstantopoulos e Konstantinos Koulouris. "Seismic resistance prediction of corroded S400 (BSt420) reinforcing bars". International Journal of Structural Integrity 9, n.º 1 (5 de fevereiro de 2018): 119–38. http://dx.doi.org/10.1108/ijsi-02-2017-0008.
Texto completo da fonteTang, Hong Wei, e Shi Bin Li. "Experimental Study on Fatigue Behavior of Low-Strength Concrete Beams". Applied Mechanics and Materials 94-96 (setembro de 2011): 795–98. http://dx.doi.org/10.4028/www.scientific.net/amm.94-96.795.
Texto completo da fonteMATSUMOTO, Nobuyuki. "A study on fatigue behavior of cold-worked deformed reinforcing bars." Doboku Gakkai Ronbunshu, n.º 396 (1988): 177–86. http://dx.doi.org/10.2208/jscej.1988.396_177.
Texto completo da fonteNoël, Martin, e Khaled Soudki. "Fatigue Behavior of GFRP Reinforcing Bars in Air and in Concrete". Journal of Composites for Construction 18, n.º 5 (outubro de 2014): 04014006. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000468.
Texto completo da fonteCaprili, Silvia, Jörg Moersch e Walter Salvatore. "Mechanical Performance versus Corrosion Damage Indicators for Corroded Steel Reinforcing Bars". Advances in Materials Science and Engineering 2015 (2015): 1–19. http://dx.doi.org/10.1155/2015/739625.
Texto completo da fonteRezansoff, Telvin, James A. Zacaruk e Jeffrey G. Afseth. "High cycle (fatigue) resistance of reinforced concrete beams with lap splices". Canadian Journal of Civil Engineering 20, n.º 4 (1 de agosto de 1993): 642–49. http://dx.doi.org/10.1139/l93-081.
Texto completo da fonteKhamichonok, V. V., N. G. Matveev, I. A. Mirochnik e E. V. Chinоikalov. "Elaboration of a technology of class A500 reinforcing bar production with a complex of additional properties as per GOST 34028–2016 at JSC EVRAZ ZSMK". Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 75, n.º 6 (26 de julho de 2019): 711–17. http://dx.doi.org/10.32339/0135-5910-2019-6-711-717.
Texto completo da fonteKashani, Mohammad M., Shunyao Cai, Sean A. Davis e Paul J. Vardanega. "Influence of Bar Diameter on Low-Cycle Fatigue Degradation of Reinforcing Bars". Journal of Materials in Civil Engineering 31, n.º 4 (abril de 2019): 06019002. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002637.
Texto completo da fonteREAL, E., C. RODRÍGUEZ, F. J. BELZUNCE, P. SANJURJO, A. F. CANTELI e I. F. PARIENTE. "Fatigue behaviour of duplex stainless steel reinforcing bars subjected to shot peening". Fatigue & Fracture of Engineering Materials & Structures 32, n.º 7 (julho de 2009): 567–72. http://dx.doi.org/10.1111/j.1460-2695.2009.01360.x.
Texto completo da fonteKashani, Mohammad M., Aneeka K. Barmi e Viktoria S. Malinova. "Influence of inelastic buckling on low-cycle fatigue degradation of reinforcing bars". Construction and Building Materials 94 (setembro de 2015): 644–55. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.102.
Texto completo da fonteApostolopoulos, C. A., e M. P. Papadopoulos. "Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400". Construction and Building Materials 21, n.º 4 (abril de 2007): 855–64. http://dx.doi.org/10.1016/j.conbuildmat.2005.12.012.
Texto completo da fonteSukach, Mykhailo, Myroslav Kindrachuk e Valeriy Makarenko. "Research of corrosion and mechanical resistance of reinforce-ment steels designated for operation in hydraulic structures". Pidvodni tehnologii, n.º 11 (29 de outubro de 2021): 88–95. http://dx.doi.org/10.32347/uwt2021.11.1802.
Texto completo da fonteRobl, Tobias, Christoph Hubertus Wölfle, Muhammed Zubair Shahul Hameed, Stefan Rappl, Christian Krempaszky e Ewald Werner. "An Approach to Predict Geometrically and Thermo-Mechanically Induced Stress Concentrations in Ribbed Reinforcing Bars". Metals 12, n.º 3 (26 de fevereiro de 2022): 411. http://dx.doi.org/10.3390/met12030411.
Texto completo da fonteBasdeki, Maria, e Charis Apostolopoulos. "Mechanical Behavior Evaluation of Tempcore and Hybrid Reinforcing Steel Bars via a Proposed Fatigue Damage Index in Long Terms". Metals 11, n.º 5 (19 de maio de 2021): 834. http://dx.doi.org/10.3390/met11050834.
Texto completo da fonteRodríguez, C., E. Real, F. J. Belzunce, A. F. Canteli e M. L. Aenlle. "Fatigue behaviour of hot rolled reinforcing bars of austenitic and duplex stainless steels". Materials Science and Technology 23, n.º 2 (fevereiro de 2007): 145–50. http://dx.doi.org/10.1179/174328407x154338.
Texto completo da fonteTripathi, Mayank, Rajesh P. Dhakal, Farhad Dashti e Leonardo M. Massone. "Low-cycle fatigue behaviour of reinforcing bars including the effect of inelastic buckling". Construction and Building Materials 190 (novembro de 2018): 1226–35. http://dx.doi.org/10.1016/j.conbuildmat.2018.09.192.
Texto completo da fonteApostolopoulos, Ch Alk. "Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue". Construction and Building Materials 21, n.º 7 (julho de 2007): 1447–56. http://dx.doi.org/10.1016/j.conbuildmat.2006.07.008.
Texto completo da fonteLi, Pengfei, Ni Tan e Chengzhi Wang. "Nonlinear Bond Model for the Dowel Action considering the Fatigue Damage Effect". Advances in Materials Science and Engineering 2018 (20 de junho de 2018): 1–11. http://dx.doi.org/10.1155/2018/9690202.
Texto completo da fonteHAWILEH, R. A., J. A. ABDALLA, F. OUDAH e K. ABDELRAHMAN. "Low-cycle fatigue life behaviour of BS 460B and BS B500B steel reinforcing bars". Fatigue & Fracture of Engineering Materials & Structures 33, n.º 7 (15 de abril de 2010): 397–407. http://dx.doi.org/10.1111/j.1460-2695.2010.01452.x.
Texto completo da fonteBar, H. N., S. Sivaprasad, N. Narasaiah, Surajit K. Paul, B. N. Sen e Sanjay Chandra. "Low Cycle and Ratchetting Fatigue Behavior of High UTS/YS Ratio Reinforcing Steel Bars". Journal of Materials Engineering and Performance 22, n.º 6 (25 de janeiro de 2013): 1701–7. http://dx.doi.org/10.1007/s11665-013-0470-x.
Texto completo da fonteXu, Li Hua, Hao Zeng, Feng Xu e Wen Ke Qin. "Static and Fatigue Experimental Research on Reinforced Concrete Beams Strengthened with Pre-Stress CFRP Rods". Advanced Materials Research 368-373 (outubro de 2011): 2001–5. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.2001.
Texto completo da fonteLuo, Yun Rong, Tao Zeng e Lei Fu. "Investigation on the Influence of Fatigue Damage on the Mechanics Property of Anti-Seismic Steel HRB400E Reinforcing Steel Bars". Applied Mechanics and Materials 368-370 (agosto de 2013): 1678–82. http://dx.doi.org/10.4028/www.scientific.net/amm.368-370.1678.
Texto completo da fonteApostolopoulos, Ch Alk, e V. P. Pasialis. "Effects of Corrosion and Ribs on Low Cycle Fatigue Behavior of Reinforcing Steel Bars S400". Journal of Materials Engineering and Performance 19, n.º 3 (2 de julho de 2009): 385–94. http://dx.doi.org/10.1007/s11665-009-9502-y.
Texto completo da fonteFernandez, Ignasi, Jesús Miguel Bairán e Antonio R. Marí. "Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ–ε behavior". Construction and Building Materials 101 (dezembro de 2015): 772–83. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.139.
Texto completo da fonteChen, Jie, Bo Diao, Jingjing He, Sen Pang e Xuefei Guan. "Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion". International Journal of Fatigue 110 (maio de 2018): 153–61. http://dx.doi.org/10.1016/j.ijfatigue.2018.01.019.
Texto completo da fonteKashani, Mohammad M., Laura N. Lowes, Adam J. Crewe e Nicholas A. Alexander. "Phenomenological hysteretic model for corroded reinforcing bars including inelastic buckling and low-cycle fatigue degradation". Computers & Structures 156 (agosto de 2015): 58–71. http://dx.doi.org/10.1016/j.compstruc.2015.04.005.
Texto completo da fonteVasco, Marina C., Panagiota Polydoropoulou, Apostolos N. Chamos e Spiros G. Pantelakis. "Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars". Frattura ed Integrità Strutturale 11, n.º 42 (29 de setembro de 2017): 9–22. http://dx.doi.org/10.3221/igf-esis.42.02.
Texto completo da fonteAldabagh, Saif, e M. Shahria Alam. "Low-cycle fatigue performance of high-strength steel reinforcing bars considering the effect of inelastic buckling". Engineering Structures 235 (maio de 2021): 112114. http://dx.doi.org/10.1016/j.engstruct.2021.112114.
Texto completo da fonteAbdalla, Jamal A., e Rami Hawileh. "Modeling and simulation of low-cycle fatigue life of steel reinforcing bars using artificial neural network". Journal of the Franklin Institute 348, n.º 7 (setembro de 2011): 1393–403. http://dx.doi.org/10.1016/j.jfranklin.2010.04.005.
Texto completo da fonteEl-Ragaby, Amr, Ehab El-Salakawy e Brahim Benmokrane. "Fatigue analysis of concrete bridge deck slabs reinforced with E-glass/vinyl ester FRP reinforcing bars". Composites Part B: Engineering 38, n.º 5-6 (julho de 2007): 703–11. http://dx.doi.org/10.1016/j.compositesb.2006.07.012.
Texto completo da fonteGirgin, Sadik Can, Mohammadreza Moharrami e Ioannis Koutromanos. "Nonlinear Beam-Based Modeling of RC Columns Including the Effect of Reinforcing-Bar Buckling and Rupture". Earthquake Spectra 34, n.º 3 (agosto de 2018): 1289–309. http://dx.doi.org/10.1193/063017eqs136m.
Texto completo da fonteHawileh, R., A. Rahman e H. Tabatabai. "Evaluation of the Low-Cycle Fatigue Life in ASTM A706 and A615 Grade 60 Steel Reinforcing Bars". Journal of Materials in Civil Engineering 22, n.º 1 (janeiro de 2010): 65–76. http://dx.doi.org/10.1061/(asce)0899-1561(2010)22:1(65).
Texto completo da fonteLi, Shibin, Hongwei Tang, Qiang Gui e Zhongguo John Ma. "Corrigendum to “Fatigue behavior of naturally corroded plain reinforcing bars” [Constr. Build. Mater. 152 (2017) 933–942]". Construction and Building Materials 155 (novembro de 2017): 1256–57. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.011.
Texto completo da fonteKashani, Mohammad M., Peyman Alagheband, Rafid Khan e Sean Davis. "Impact of corrosion on low-cycle fatigue degradation of reinforcing bars with the effect of inelastic buckling". International Journal of Fatigue 77 (agosto de 2015): 174–85. http://dx.doi.org/10.1016/j.ijfatigue.2015.03.013.
Texto completo da fontePan, Yuan, Guo Hua Xing, Guo Fu e Jian Ling Hou. "Cumulative Seismic Damage of Reinforced Concrete Columns: Benchmark and Low-Cycle Fatigue Tests". Applied Mechanics and Materials 52-54 (março de 2011): 734–39. http://dx.doi.org/10.4028/www.scientific.net/amm.52-54.734.
Texto completo da fonteHe, Shiqin, Jiaxing Zhao, Chunyue Wang e Hui Wang. "Experimental Study on the Degradation of Bonding Behavior between Reinforcing Bars and Concrete after Corrosion and Fatigue Damage". Structural Durability & Health Monitoring 16, n.º 3 (2022): 195–212. http://dx.doi.org/10.32604/sdhm.2022.08886.
Texto completo da fonteApostolopoulos, Ch Alk. "The effect of ribs on the mechanical behavior of corroded reinforcing steel bars S500s under low-cycle fatigue". Materials and Structures 41, n.º 5 (12 de setembro de 2007): 991–99. http://dx.doi.org/10.1617/s11527-007-9300-7.
Texto completo da fonteJu, Minkwan, e Hongseob Oh. "Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading". International Journal of Polymer Science 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/367528.
Texto completo da fonteSepulveda, Barbara Daniela Giorgini, Phillip Visintin e Deric John Oehlers. "Fatigue bond-slip properties of steel reinforcing bars embedded in UHPFRC: Extraction and development of an accumulated damage law". Case Studies in Construction Materials 17 (dezembro de 2022): e01370. http://dx.doi.org/10.1016/j.cscm.2022.e01370.
Texto completo da fonte