Literatura científica selecionada sobre o tema "Refractory materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Refractory materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Refractory materials"

1

Albrecht, Gelon, Stefan Kaiser, Harald Giessen e Mario Hentschel. "Refractory Plasmonics without Refractory Materials". Nano Letters 17, n.º 10 (8 de setembro de 2017): 6402–8. http://dx.doi.org/10.1021/acs.nanolett.7b03303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Vakhula, Orest, Myron Pona, Ivan Solokha, Oksana Koziy e Maria Petruk. "Ceramic Protective Coatings for Cordierite-Mullite Refractory Materials". Chemistry & Chemical Technology 15, n.º 2 (15 de maio de 2021): 247–53. http://dx.doi.org/10.23939/chcht15.02.247.

Texto completo da fonte
Resumo:
The issue of cordierite-mullite refractories protection from the influence of aggressive factors is considered. The interaction between the components of protective coatings has been studied. It has been investigated that in the systems based on poly(methylphenylsiloxane) filled with magnesium oxide, alumina and quartz sand, the synthesis of cordierite (2MgO•2Al2O3•5SiO2), mullite (3Al2O3•2SiO2) or magnesium aluminate spinel (MgO•Al2O3) is possible. The basic composition of the protective coating, which can be recommended for the protection of cordierite-mullite refractory, is proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Suvorov, S. A. "Elastic refractory materials". Refractories and Industrial Ceramics 48, n.º 3 (maio de 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Simon, Franz-Georg, Burkart Adamczyk e Gerd Kley. "Refractory Materials from Waste". MATERIALS TRANSACTIONS 44, n.º 7 (2003): 1251–54. http://dx.doi.org/10.2320/matertrans.44.1251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ismailov, M. B., e Zh A. Gabayev. "SHS of refractory materials". Journal of Engineering Physics and Thermophysics 65, n.º 5 (1994): 1131–33. http://dx.doi.org/10.1007/bf00862048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dudnik, E. V., A. V. Shevchenko, A. K. Ruban, Z. A. Zaitseva, V. M. Vereshchaka, V. P. Red’ko e A. A. Chekhovskii. "Refractory and ceramic materials". Powder Metallurgy and Metal Ceramics 46, n.º 7-8 (julho de 2007): 345–56. http://dx.doi.org/10.1007/s11106-007-0055-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Vakhula, Orest, Myron Pona, Ivan Solokha e Igor Poznyak. "Research of Corrosive Destruction Mechanism of Cordierite-Mullite Refractory Materials". Chemistry & Chemical Technology 4, n.º 1 (20 de março de 2010): 81–84. http://dx.doi.org/10.23939/chcht04.01.081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Seifert, Severin, Sebastian Dittrich e Jürgen Bach. "Recovery of Raw Materials from Ceramic Waste Materials for the Refractory Industry". Processes 9, n.º 2 (26 de janeiro de 2021): 228. http://dx.doi.org/10.3390/pr9020228.

Texto completo da fonte
Resumo:
Products of the refractory industry are key for the production of heavy industry goods such as steel and iron, cement, aluminum and glass. Corresponding industries are dependent on thermal processes to manufacture their products, which in turn would not be possible if there were no refractory materials, such as refractory bricks or refractory mixes. For the production of refractory materials, primary raw materials or semi-finished products such as corundum, bauxite or zircon are used. Industrial recycling of refractory raw materials would reduce dependencies, conserve resources and reduce global CO2 emissions. Today, only a small quantity of the refractory materials used can be recycled because raw materials (regenerates) obtained from end-of-life materials are of insufficient quality. In this study, regenerates from different refractory waste products could be obtained using the innovative processing method of electrodynamic fragmentation. It was shown that these regenerates have a high chemical purity and are therefore of high quality. It could be confirmed that the use of these regenerates in refractory materials does not affect the characteristic properties, such as refractoriness and mechanical strength. Thus, electrodynamic fragmentation is a process, which is able to provide high-quality raw materials for the refractory industry from used materials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhang, Cai Li, e Xiao Qing Song. "Fabrication and Properties of New Building Materials by Reutilization Refractory Materials". Applied Mechanics and Materials 507 (janeiro de 2014): 388–91. http://dx.doi.org/10.4028/www.scientific.net/amm.507.388.

Texto completo da fonte
Resumo:
The utilization of domestic waste refractory materials are reviewed, and points out that China exists to the comprehensive utilization of waste refractory material in question, discusses the necessity of recycling of waste refractory material; focuses on the composite insulation board has the advantages of organic heat preservation material strength coefficient of heat conductivity of inorganic insulation materials of high and low flame retardant, for example discusses the feasibility of waste refractory materials used in building materials field, comprehensive recycling of waste refractory material resources and corresponding to focus attention on the utilization of the problems put forward their views.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mukasyan, A. S., e J. D. E. White. "Combustion joining of refractory materials". International Journal of Self-Propagating High-Temperature Synthesis 16, n.º 3 (setembro de 2007): 154–68. http://dx.doi.org/10.3103/s1061386207030089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Refractory materials"

1

Akpan, Edem T. Gogot︠s︡i I︠U︡ G. "Viscoelastic toughening of refractory ceramics /". Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/284.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Pandhari, Abhijit. "Modeling of thermal stress cycling in refractory materials". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62359.

Texto completo da fonte
Resumo:
In metallurgical reactors, the thermal stress field of refractories always changes with the heat transfer conditions at the hot-face. It is suggested that ‘thermally induced refractory cracking’ is often the primary cause of in-service refractory failure but quantitative support for this is lacking. The current work is focussed on studying this aspect by developing an experimentally validated thermomechanical model that considers refractory strength degradation under repeated thermal cycling. A thermo-mechanical model has been developed with ABAQUS to predict thermal stress and damage in a refractory specimen subjected to thermal cycling. An experiment based on the “contact-conduction method” that uses a hot/cold metal block to heat/cool a refractory specimen was carried out to validate the model. The experiments were run for up to 3-cycles starting from cold- and hot-refractory specimens. Thermocouples were used to gather temperature data from refractory and steel block. An inverse heat conduction model was developed to predict the heat flux applied to the refractory specimen by the steel block based on the temperature history from the steel block. Ultrasonic testing was carried out on the refractory specimens before and after the thermal cycling tests. The contact-conduction method was successful in creating significant thermal gradients in the refractory specimens. Thermocouples on refractory located at 1cm from the steel-refractory show temperature variation of about 500°C and 575°C for cold- and hot-refractory specimen, respectively after 3-cycles. The model was capable of predicting the temperature changes and damage in the refractory material after multiple cycles. Ultrasonic velocity tests show significant change in the sound velocities in the areas experiencing thermal cycling, indicating significant micro-cracking damage in those areas. It was seen that with multiple cycles the damage penetrated further into the specimen, however the magnitude of the damage does not increase significantly. Application to an example tundish operation indicated that the model was capable of analyzing an ideal preheating schedule and was capable of predicting the effect of idle time and multiple thermal cycles on the damage in refractories. However, to predict thermal spalling more precisely, an integrated model that considers the effect of thermal gradients, chemical reactions and mechanical loads is needed.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Davis, Robert Bruce. "Design and development of advanced castable refractory materials /". Full text open access at:, 2001. http://content.ohsu.edu/u?/etd,187.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Angara, Raghavendra Phani Krishna. "Recovery of materials from recycling of spent furnace linings". Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Angara_Raghavendra_09007dcc80575b94.pdf.

Texto completo da fonte
Resumo:
Thesis (M.S.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 4, 2008) Includes bibliographical references (p. 69-71).
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Martin, Rachel (Rachel M. ). "Mechanical testing of rapid-prototyping refractory ceramic print media". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/86278.

Texto completo da fonte
Resumo:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, February 2013.
Page 30 blank. Cataloged from PDF version of thesis.
Includes bibliographical references.
Additively manufactured (3D-printed) refractory alumina-silica ceramics were mechanically tested to ascertain their ultimate tensile strengths and observed to determine their dimensional consistency over the printing and post-printing process. The equipment used to perform tensile testing was designed and built for use with custom-designed tensile test samples. Two ceramic powders, V18 (electronic-grade alumina, colloidal silica, and organic content) and 403C (200-mesh mullite, organic content, and magnesium oxide), were printed into test samples on ZCorporation ZPrinter® 310 and 510 machines, before being infiltrated with tetraethylorthosilicate (TEaS), and in some cases infiltrated again with a 40% by weight suspension of silica in water (Ludox). Ludox-infiltrated V18 proved to be the strongest medium, with a UTS of 4.539 ± 1.008 MPa; non-Ludox-infiltrated V18 had a UTS of 2.071 ± 0.443 MPA; Ludox-infiltrated 403C was weakest with a UTS of 1.378 ± 0.526 MPa. Within V18, greater silica content lead to greater tensile strength, but this did not hold true for 403C. 403C displayed volumetric shrinkage of about 1.5%, while V18's volumetric shrinkage ranged from 7% to 14%.
by Rachel Martin.
S.B.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bullard, Daniel Edward. "Processing of refractory oxides in a nonequilibrium plasma". Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186440.

Texto completo da fonte
Resumo:
This investigation focuses on the uses of non-equilibrium plasmas to enhance the chemical reactions used in metallurgical process chemistry. The main emphasis of this work was the reduction of TiO₂ and FeTiO₃ in a hydrogen plasma. The plasma was maintained in a single resonant cavity using microwave energy (2.45 GHz). The reaction was monitored for volatile species by a quadrupole mass spectrometer. The extent of reaction during hydrogen reduction experiments was performed using an external standard X-ray diffraction technique. The effect of process variables (absorbed power, chamber pressure, time of plasma solid contact, applied voltages) on the extent of the reactions and the sample temperature were investigated. An investigation into the chlorination of TiO₂ in a chlorine plasma was also performed, however, the numerous side reactions that developed during these experiments made analysis difficult. Attempts were made to identify the volatile species from the mass spectra obtained during the chlorination experiments. The reduction of fused silica as a result of contact with the plasma is also investigated. Thermodynamic calculations suggest that the reduction proceeds by the formation of silane in the plasma; metallic silicon is formed by the subsequent thermal decomposition of silane in a non-oxidizing environment. A mechanism for the formation of silane is proposed. Finally, one proposed use for this technology is presented: The production of oxygen in situ form the lunar soil. Experimental values and thermodynamic data are used to develop a plasma process flow diagram for the production of oxygen. The mining requirements, the hydrogen flow rates and the power demands for this system are compared to more conventional process under consideration for the production of lunar oxygen.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gentile, Maria. "Alkali attack of coal gasifier refractory lining". Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45668.

Texto completo da fonte
Resumo:

An experimental test system was designed to simulate the operating conditions found in nonslagging coal gasifiers. The reaction products that form when refractory linings in coal gasifiers are exposed to alkali impurities (sodium or potassium) were experimentally determined. Analysis of selected physical and chemical properties of the reaction products, which typically form between the alkali and the refractory will lead to a better understanding of the mechanisms behind refractory failures associated with alkali attack.

The reaction products sodium aluminate (Na₂O⋅Al₂O₃), N₂C₃A₅ (2Na₂O·3CaO·5A1₂O₃), nepheline (Na20â ¢Al203â ¢2SiO2), potassium aluminate, (K2Oâ ¢Al203), and kaliophilite (K2Oâ ¢Al203â ¢2Si02) were synthesized and their solubility in water and coefficients of linear thermal expansion were: measured. Of the compounds tested, the formation of potassium aluminate would be the most detrimental to the gasifier lining. The linear thermal expansion of potassium aluminate was 2.05% from room temperature to 800°C, which was twice as large as the other compounds. Potassium aluminate also possessed the highest solubility in water which was 8.893/L at 90°C.


Master of Science
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sobrosa, Fabiano Zanini. "Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz". Universidade Federal do Pampa, 2014. http://dspace.unipampa.edu.br:8080/xmlui/handle/riu/767.

Texto completo da fonte
Resumo:
Submitted by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-25T12:34:29Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5)
Approved for entry into archive by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-25T12:37:45Z (GMT) No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5)
Made available in DSpace on 2017-01-25T12:37:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5) Previous issue date: 2014-03-20
Com a intenção de agregar valor à cinza da casca de arroz, subproduto da indústria orizícola, e colaborar para um desenvolvimento sustentável do país, esta pesquisa buscou desenvolver materiais cerâmicos refratários com a substituição parcial da argila pela sílica de casca de arroz (SCA) produzida a partir da geração de energia elétrica. Atualmente, na região da fronteira oeste do Estado do Rio Grande do Sul, existem várias usinas termoelétricas de biomassa para geração de energia elétrica através da queima da casca de arroz. Essa tecnologia vem ao encontro da necessidade de diversificação da matriz energética no país. A indústria orizícola produz no Brasil aproximadamente 12 milhões de toneladas por ano de arroz, e aproximadamente 2,5 milhões de toneladas por ano são convertidos em casca. Caso toda esta casca fosse queimada, gerar-se-iam aproximadamente 500 mil toneladas de cinza, a qual é rica em sílica. Portanto, viabilizar seu aproveitamento tende a reduzir o passivo ambiental, além dos benefícios econômicos. No presente trabalho foi analisado o efeito da substituição parcial da argila refratária por sílica da casca de arroz (SCA) nas propriedades mecânicas e termomecânicas dos materiais cerâmicos refratários produzidos, em percentuais de 5, 10 e 20%. Foram analisadas as propriedades mecânicas desses materiais através de ensaios de resistência à compressão, tração direta, flexão em três pontos e dureza superficial Vickers. Analisaram-se também a retração linear, absorção de água, porosidade aparente e resistência ao choque térmico. Conforme se aumentou a substituição parcial de argila refratária por SCA, foi obtido um melhor empacotamento da mistura granular e, consequentemente, ocorreu uma melhora nas propriedades mecânicas das amostras. Por outro lado, o material apresentou-se mais frágil, com menor resistência ao choque térmico. Não foi encontrada variação na retração linear após a queima, já a absorção de água e porosidade aparente diminuíram conforme se aumentou a substituição da argila pela SCA. A microestrutura do material foi analisada através de análise por microscopia eletrônica de varredura (MEV) e difração de raios-x, onde se identificaram as fases cristalinas na mineralogia do material resultante. Na análise da mineralogia do material observou-se um aumento de pico de cristobalita conforme se aumentou o teor de SCA na mistura, em função da cristalização da sílica livre. Um menor volume de porosidade foi encontrado conforme se aumentou o teor de substituição de argila pela SCA.
With the intention of adding value to rice husk ash, a byproduct of paddy industry, and contribute to sustainable development of the country, this research sought to develop refractory ceramic materials with refractory partial replacement of clay by silica from rice husk (SCA) produced from electricity generation. Currently on the western border of the State of Rio Grande do Sul, there are several biomass power plants for generating electricity by burning rice husk. This technology comes against the need for diversification of energy sources in the country. The paddy industry in Brazil produces approximately 12 million tons of rice per year, of which approximately 2.5 million tons per year are converted into shell. If all this bark was burned, it would generate approximately 500 tons of ash, which is rich in silica. Thus enabling its use tends to reduce the environmental liability beyond economic benefits. In the present work, the effect of partial replacement of silica refractory clay for rice husk (SCA) on the mechanical and thermomechanical properties of refractory ceramic materials was analyzed for percentages of 5, 10 and 20%. The mechanical properties of these materials were analyzed by testing compressive strength, direct-drive, three point bending and superficial hardness. We also analyzed the linear shrinkage, water absorption, apparent porosity and resistance to thermal shock. As increased the partial replacement of refractory clay for SCA in the mixture was obtained a better packing of the granular mixture and, consequently, better results in mechanical properties were found. On the other hand, the material appeared more brittle, with a lower thermal shock resistance. Was not found in the linear shrinkage after firing, the water absorption and apparent porosity decreased as the clay was increased by replacement SCA. The microstructure of the material was analyzed by scanning electron microscopy (MEV) and x-ray diffraction where the crystalline phases identified in the mineralogy of the resulting material. The analysis of the mineralogy of the material was observed an increase of cristobalite peak was increased as the content of SCA, depending on the crystallization of the free silica. A smaller volume of porosity is found according to the increased content of clay replacement SCA.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Palin, Francis Terence. "Engineering data of refractory materials and their significance in real structures". Thesis, Staffordshire University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254393.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Donald, Jeffrey Richard. "Surface interactions between non-ferrous metallurgical slags and various refractory materials". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27913.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Refractory materials"

1

1939-, Kumashiro Yukinobu, ed. Electric refractory materials. New York: Marcel Dekker, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tsutomo, Okubo, e United States. National Aeronautics and Space Administration., eds. Refractory materials of zirconate. Washington, D.C: National Aeronautics and Space Administration, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

International Iron and Steel Institute. Committee on Technology., ed. Refractory materials for steelmaking. Brussels, Belgium: International Iron and Steel Institute, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

editor, Routschka Gerald, ed. Pocket manual refractory materials. Essen: Vulkan-Verlag, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

International Symposium on Refractories (1988 Hangzhou, China). Proceedings of International Symposium on Refractories: Refractory raw materials and high performance refractory products. Beijing, People's Republic of China: International Academic Publishers, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Institut mashinovedenii͡a i metallurgii (Akademii͡a nauk SSSR), ed. Poluchenie nemetallicheskikh tugoplavkikh soedineniĭ vosstanovleniem datolitovogo kont͡sentrata. Vladivostok: DVO AN SSSR, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kopeĭkin, V. A. Ogneupornye rastvory na fosfatnykh svi͡a︡zui͡u︡shchikh. Moskva: "Metallurgii͡a︡", 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Company, Harbison-Walker Refractories. Modern refractory practice: With special reference to the products of Harbison-Walker Refractories Company. 5a ed. Pittsburgh, PA: Harbison-Walker Refractories Company, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

I͡A︡, Kosolapova T., ed. Nemetallicheskie tugoplavkie soedinenii͡a︡. Moskva: Metallurgii͡a︡, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Savitskii, E. M. Physical Metallurgy of Refractory Metals and Alloys. Boston, MA: Springer US, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Refractory materials"

1

Götze, Jens, e Matthias Göbbels. "Refractory Materials". In Introduction to Applied Mineralogy, 125–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-64867-4_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Smith, Jeffrey D., e William G. Fahrenholtz. "Refractory Oxides". In Ceramic and Glass Materials, 87–110. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-73362-3_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Knabl, Wolfram, Gerhard Leichtfried e Roland Stickler. "Refractory Metals and Refractory Metal Alloys". In Springer Handbook of Materials Data, 307–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kumashiro, Yukinobu. "Importance and Research Program of Electric Refractory Materials". In Electric Refractory Materials, 1–760. Boca Raton: CRC Press, 2000. http://dx.doi.org/10.1201/9780203908181-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Meetham, Geoffrey W., e Marcel H. Van de Voorde. "Refractory Metals". In Materials for High Temperature Engineering Applications, 86–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56938-8_9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kipouros, Georges J., e Donald R. Sadoway. "Electroplating of Refractory Metals". In Innovations in Materials Processing, 493–503. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2411-9_27.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Jinglian, Fan, e Xu Kuangdi. "Powder Metallurgy Refractory Metal Materials". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-0740-1_1469-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Oxnard, Robert T. "Overview of Refractory Recycling". In Recycling of Metals and Engineercd Materials, 1351. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Stangle, Gregory C. "Example: Combustion synthesis of refractory materials". In Modelling of Materials Processing, 689–724. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5813-2_20.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kuznetsov, S. A., S. V. Kuznetsova, E. G. Polyakov e P. T. Stangrit. "Electrochemical Production of Hafnium-Based Composite Materials". In Refractory Metals in Molten Salts, 211–18. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9135-5_22.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Refractory materials"

1

SANZERO, G. "Refractory composites structural materials". In 2nd International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-5264.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Vlček, Jozef, Hana Ovčačíková, Miroslava Klárová, Michaela Topinková, Jiří Burda, Marek Velička, Pavel Kovař e Karel Lang. "Refractory materials for biomass combustion". In THERMOPHYSICS 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132743.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

"Recycling of Ceramic Refractory Materials". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119230.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Calle, Luz, Paul Hintze, Christopher Parlier, Jeffrey Sampson, Jerome Curran, Mark Kolody e Stephen Perusich. "Refractory Materials for Flame Deflector Protection". In AIAA SPACE 2010 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-8749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

White, William B. "Refractory sulfides as IR window materials". In San Dieg - DL Tentative, editado por Paul Klocek. SPIE, 1990. http://dx.doi.org/10.1117/12.22484.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Calle, Luz, Paul Hintze, Christopher Parlier, Cori Bucherl, Jeffrey Sampson, Jerome Curran, Mark Kolody e Mary Whitten. "Launch Pad Flame Trench Refractory Materials". In SpaceOps 2010 Conference: Delivering on the Dream (Hosted by NASA Marshall Space Flight Center and Organized by AIAA). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

"Recycling of Ceramic Refractory Materials: Process Steps". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jahshan, Salim N., Richard L. Moore, Lynn B. Lundberg, Mohamed S. El-Genk e Mark D. Hoover. "Conceptual Design of a Refractory Materials Propulsion Reactor". In SPACE NUCLEAR POWER AND PROPULSION: Eleventh Symposium. AIP, 1994. http://dx.doi.org/10.1063/1.2950268.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Raheem-Kizchery, Ayesha R., Seshu B. Desu e Richard O. Claus. "High Temperature Refractory Coating Materials For Sapphire Waveguides". In OE/FIBERS '89, editado por Eric Udd. SPIE, 1990. http://dx.doi.org/10.1117/12.963127.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kovarik, Ondrej, Ales Materna, Jan Siegl, Jan Cizek e Jakub Klecka. "Fatigue Crack Growth in Plasma Sprayed Refractory Materials". In ITSC2018, editado por F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau e J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0140.

Texto completo da fonte
Resumo:
Abstract Fatigue crack growth in self-standing plasma sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Beams width, thickness and length was 4 mm, 3 mm and 32 mm respectively. Fatigue crack length was measured using the differential compliance method and fatigue crack growth rate was established as a function of stress intensity factor. Unusual crack opening under compressive loading part of the cycle was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture and splat decohesion for Mo coating. In W coating, intergranular splat fracture and void interconnection formed the fatigue crack. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by porosity. At higher values of the stress intensity factor, the splat intergranular cracking become more common and the crack propagated more perpendicularly to the specimen surface.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Refractory materials"

1

Ferber, M. K., A. Wereszczak e J. A. Hemrick. Comprehensive Creep and Thermophysical Performance of Refractory Materials. Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/885151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shannon, Steven, Jacob Eapen, Jon-Paul Maria e William Weber. Novel Engineered Refractory Materials for Advanced Reactor Applications. Office of Scientific and Technical Information (OSTI), março de 2016. http://dx.doi.org/10.2172/1246903.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hemrick, James Gordon, Jeffrey D. Smith, Kelley O'Hara, Angela Rodrigues-Schroer e Colavito. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS. Office of Scientific and Technical Information (OSTI), agosto de 2012. http://dx.doi.org/10.2172/1049095.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hemrick, James Gordon. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS. Office of Scientific and Technical Information (OSTI), setembro de 2011. http://dx.doi.org/10.2172/1024313.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hemrick, J. G., e R. Griffin. NOvel Refractory Materials for High Alkali, High Temperature Environments. Office of Scientific and Technical Information (OSTI), agosto de 2011. http://dx.doi.org/10.2172/1024343.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Katz, J. L. Investigation of the processes controlling the flame generation of refractory materials. Office of Scientific and Technical Information (OSTI), janeiro de 1990. http://dx.doi.org/10.2172/7249991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Katz, J. L. Investigation of the processes controlling the flame generation of refractory materials. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/5720588.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Panicker, Nithin, Bhagya Prabhune, Nate See, Marco Delchini, Brian Jordan, Bryan Lim, Soumya Nag, Yuri Plotnikov e Yousub Lee. Integrated Process and Materials Modeling for Development of Additive Manufacturing of Refractory Materials for Critical Applications. Office of Scientific and Technical Information (OSTI), fevereiro de 2024. http://dx.doi.org/10.2172/2397457.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Xingbo Liu, Ever Barbero, Bruce Kang, Bhaskaran Gopalakrishnan, James Headrick e Carl Irwin. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals. Office of Scientific and Technical Information (OSTI), fevereiro de 2009. http://dx.doi.org/10.2172/947111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hall, G. E. M., e J. C. Pelchat. The Determination of Boron and Other Refractory Elements in Geological Materials By InductivelyCoupled Plasma Emission Spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120354.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia