Literatura científica selecionada sobre o tema "Refractory materials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Refractory materials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Refractory materials"
Albrecht, Gelon, Stefan Kaiser, Harald Giessen e Mario Hentschel. "Refractory Plasmonics without Refractory Materials". Nano Letters 17, n.º 10 (8 de setembro de 2017): 6402–8. http://dx.doi.org/10.1021/acs.nanolett.7b03303.
Texto completo da fonteVakhula, Orest, Myron Pona, Ivan Solokha, Oksana Koziy e Maria Petruk. "Ceramic Protective Coatings for Cordierite-Mullite Refractory Materials". Chemistry & Chemical Technology 15, n.º 2 (15 de maio de 2021): 247–53. http://dx.doi.org/10.23939/chcht15.02.247.
Texto completo da fonteSuvorov, S. A. "Elastic refractory materials". Refractories and Industrial Ceramics 48, n.º 3 (maio de 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.
Texto completo da fonteSimon, Franz-Georg, Burkart Adamczyk e Gerd Kley. "Refractory Materials from Waste". MATERIALS TRANSACTIONS 44, n.º 7 (2003): 1251–54. http://dx.doi.org/10.2320/matertrans.44.1251.
Texto completo da fonteIsmailov, M. B., e Zh A. Gabayev. "SHS of refractory materials". Journal of Engineering Physics and Thermophysics 65, n.º 5 (1994): 1131–33. http://dx.doi.org/10.1007/bf00862048.
Texto completo da fonteDudnik, E. V., A. V. Shevchenko, A. K. Ruban, Z. A. Zaitseva, V. M. Vereshchaka, V. P. Red’ko e A. A. Chekhovskii. "Refractory and ceramic materials". Powder Metallurgy and Metal Ceramics 46, n.º 7-8 (julho de 2007): 345–56. http://dx.doi.org/10.1007/s11106-007-0055-z.
Texto completo da fonteVakhula, Orest, Myron Pona, Ivan Solokha e Igor Poznyak. "Research of Corrosive Destruction Mechanism of Cordierite-Mullite Refractory Materials". Chemistry & Chemical Technology 4, n.º 1 (20 de março de 2010): 81–84. http://dx.doi.org/10.23939/chcht04.01.081.
Texto completo da fonteSeifert, Severin, Sebastian Dittrich e Jürgen Bach. "Recovery of Raw Materials from Ceramic Waste Materials for the Refractory Industry". Processes 9, n.º 2 (26 de janeiro de 2021): 228. http://dx.doi.org/10.3390/pr9020228.
Texto completo da fonteZhang, Cai Li, e Xiao Qing Song. "Fabrication and Properties of New Building Materials by Reutilization Refractory Materials". Applied Mechanics and Materials 507 (janeiro de 2014): 388–91. http://dx.doi.org/10.4028/www.scientific.net/amm.507.388.
Texto completo da fonteMukasyan, A. S., e J. D. E. White. "Combustion joining of refractory materials". International Journal of Self-Propagating High-Temperature Synthesis 16, n.º 3 (setembro de 2007): 154–68. http://dx.doi.org/10.3103/s1061386207030089.
Texto completo da fonteTeses / dissertações sobre o assunto "Refractory materials"
Akpan, Edem T. Gogot︠s︡i I︠U︡ G. "Viscoelastic toughening of refractory ceramics /". Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/284.
Texto completo da fontePandhari, Abhijit. "Modeling of thermal stress cycling in refractory materials". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62359.
Texto completo da fonteApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Davis, Robert Bruce. "Design and development of advanced castable refractory materials /". Full text open access at:, 2001. http://content.ohsu.edu/u?/etd,187.
Texto completo da fonteAngara, Raghavendra Phani Krishna. "Recovery of materials from recycling of spent furnace linings". Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Angara_Raghavendra_09007dcc80575b94.pdf.
Texto completo da fonteVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 4, 2008) Includes bibliographical references (p. 69-71).
Martin, Rachel (Rachel M. ). "Mechanical testing of rapid-prototyping refractory ceramic print media". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/86278.
Texto completo da fontePage 30 blank. Cataloged from PDF version of thesis.
Includes bibliographical references.
Additively manufactured (3D-printed) refractory alumina-silica ceramics were mechanically tested to ascertain their ultimate tensile strengths and observed to determine their dimensional consistency over the printing and post-printing process. The equipment used to perform tensile testing was designed and built for use with custom-designed tensile test samples. Two ceramic powders, V18 (electronic-grade alumina, colloidal silica, and organic content) and 403C (200-mesh mullite, organic content, and magnesium oxide), were printed into test samples on ZCorporation ZPrinter® 310 and 510 machines, before being infiltrated with tetraethylorthosilicate (TEaS), and in some cases infiltrated again with a 40% by weight suspension of silica in water (Ludox). Ludox-infiltrated V18 proved to be the strongest medium, with a UTS of 4.539 ± 1.008 MPa; non-Ludox-infiltrated V18 had a UTS of 2.071 ± 0.443 MPA; Ludox-infiltrated 403C was weakest with a UTS of 1.378 ± 0.526 MPa. Within V18, greater silica content lead to greater tensile strength, but this did not hold true for 403C. 403C displayed volumetric shrinkage of about 1.5%, while V18's volumetric shrinkage ranged from 7% to 14%.
by Rachel Martin.
S.B.
Bullard, Daniel Edward. "Processing of refractory oxides in a nonequilibrium plasma". Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186440.
Texto completo da fonteGentile, Maria. "Alkali attack of coal gasifier refractory lining". Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45668.
Texto completo da fonteAn experimental test system was designed to simulate the operating conditions found in nonslagging coal gasifiers. The reaction products that form when refractory linings in coal gasifiers are exposed to alkali impurities (sodium or potassium) were experimentally determined. Analysis of selected physical and chemical properties of the reaction products, which typically form between the alkali and the refractory will lead to a better understanding of the mechanisms behind refractory failures associated with alkali attack.
The reaction products sodium aluminate (Na₂O⋅Al₂O₃), N₂C₃A₅ (2Na₂O·3CaO·5A1₂O₃), nepheline (Na20â ¢Al203â ¢2SiO2), potassium aluminate, (K2Oâ ¢Al203), and kaliophilite (K2Oâ ¢Al203â ¢2Si02) were synthesized and their solubility in water and coefficients of linear thermal expansion were: measured. Of the compounds tested, the formation of potassium aluminate would be the most detrimental to the gasifier lining. The linear thermal expansion of potassium aluminate was 2.05% from room temperature to 800°C, which was twice as large as the other compounds. Potassium aluminate also possessed the highest solubility in water which was 8.893/L at 90°C.
Master of Science
Sobrosa, Fabiano Zanini. "Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz". Universidade Federal do Pampa, 2014. http://dspace.unipampa.edu.br:8080/xmlui/handle/riu/767.
Texto completo da fonteApproved for entry into archive by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-25T12:37:45Z (GMT) No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5)
Made available in DSpace on 2017-01-25T12:37:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5) Previous issue date: 2014-03-20
Com a intenção de agregar valor à cinza da casca de arroz, subproduto da indústria orizícola, e colaborar para um desenvolvimento sustentável do país, esta pesquisa buscou desenvolver materiais cerâmicos refratários com a substituição parcial da argila pela sílica de casca de arroz (SCA) produzida a partir da geração de energia elétrica. Atualmente, na região da fronteira oeste do Estado do Rio Grande do Sul, existem várias usinas termoelétricas de biomassa para geração de energia elétrica através da queima da casca de arroz. Essa tecnologia vem ao encontro da necessidade de diversificação da matriz energética no país. A indústria orizícola produz no Brasil aproximadamente 12 milhões de toneladas por ano de arroz, e aproximadamente 2,5 milhões de toneladas por ano são convertidos em casca. Caso toda esta casca fosse queimada, gerar-se-iam aproximadamente 500 mil toneladas de cinza, a qual é rica em sílica. Portanto, viabilizar seu aproveitamento tende a reduzir o passivo ambiental, além dos benefícios econômicos. No presente trabalho foi analisado o efeito da substituição parcial da argila refratária por sílica da casca de arroz (SCA) nas propriedades mecânicas e termomecânicas dos materiais cerâmicos refratários produzidos, em percentuais de 5, 10 e 20%. Foram analisadas as propriedades mecânicas desses materiais através de ensaios de resistência à compressão, tração direta, flexão em três pontos e dureza superficial Vickers. Analisaram-se também a retração linear, absorção de água, porosidade aparente e resistência ao choque térmico. Conforme se aumentou a substituição parcial de argila refratária por SCA, foi obtido um melhor empacotamento da mistura granular e, consequentemente, ocorreu uma melhora nas propriedades mecânicas das amostras. Por outro lado, o material apresentou-se mais frágil, com menor resistência ao choque térmico. Não foi encontrada variação na retração linear após a queima, já a absorção de água e porosidade aparente diminuíram conforme se aumentou a substituição da argila pela SCA. A microestrutura do material foi analisada através de análise por microscopia eletrônica de varredura (MEV) e difração de raios-x, onde se identificaram as fases cristalinas na mineralogia do material resultante. Na análise da mineralogia do material observou-se um aumento de pico de cristobalita conforme se aumentou o teor de SCA na mistura, em função da cristalização da sílica livre. Um menor volume de porosidade foi encontrado conforme se aumentou o teor de substituição de argila pela SCA.
With the intention of adding value to rice husk ash, a byproduct of paddy industry, and contribute to sustainable development of the country, this research sought to develop refractory ceramic materials with refractory partial replacement of clay by silica from rice husk (SCA) produced from electricity generation. Currently on the western border of the State of Rio Grande do Sul, there are several biomass power plants for generating electricity by burning rice husk. This technology comes against the need for diversification of energy sources in the country. The paddy industry in Brazil produces approximately 12 million tons of rice per year, of which approximately 2.5 million tons per year are converted into shell. If all this bark was burned, it would generate approximately 500 tons of ash, which is rich in silica. Thus enabling its use tends to reduce the environmental liability beyond economic benefits. In the present work, the effect of partial replacement of silica refractory clay for rice husk (SCA) on the mechanical and thermomechanical properties of refractory ceramic materials was analyzed for percentages of 5, 10 and 20%. The mechanical properties of these materials were analyzed by testing compressive strength, direct-drive, three point bending and superficial hardness. We also analyzed the linear shrinkage, water absorption, apparent porosity and resistance to thermal shock. As increased the partial replacement of refractory clay for SCA in the mixture was obtained a better packing of the granular mixture and, consequently, better results in mechanical properties were found. On the other hand, the material appeared more brittle, with a lower thermal shock resistance. Was not found in the linear shrinkage after firing, the water absorption and apparent porosity decreased as the clay was increased by replacement SCA. The microstructure of the material was analyzed by scanning electron microscopy (MEV) and x-ray diffraction where the crystalline phases identified in the mineralogy of the resulting material. The analysis of the mineralogy of the material was observed an increase of cristobalite peak was increased as the content of SCA, depending on the crystallization of the free silica. A smaller volume of porosity is found according to the increased content of clay replacement SCA.
Palin, Francis Terence. "Engineering data of refractory materials and their significance in real structures". Thesis, Staffordshire University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254393.
Texto completo da fonteDonald, Jeffrey Richard. "Surface interactions between non-ferrous metallurgical slags and various refractory materials". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27913.pdf.
Texto completo da fonteLivros sobre o assunto "Refractory materials"
1939-, Kumashiro Yukinobu, ed. Electric refractory materials. New York: Marcel Dekker, 2000.
Encontre o texto completo da fonteTsutomo, Okubo, e United States. National Aeronautics and Space Administration., eds. Refractory materials of zirconate. Washington, D.C: National Aeronautics and Space Administration, 1988.
Encontre o texto completo da fonteInternational Iron and Steel Institute. Committee on Technology., ed. Refractory materials for steelmaking. Brussels, Belgium: International Iron and Steel Institute, 1985.
Encontre o texto completo da fonteeditor, Routschka Gerald, ed. Pocket manual refractory materials. Essen: Vulkan-Verlag, 1997.
Encontre o texto completo da fonteInternational Symposium on Refractories (1988 Hangzhou, China). Proceedings of International Symposium on Refractories: Refractory raw materials and high performance refractory products. Beijing, People's Republic of China: International Academic Publishers, 1989.
Encontre o texto completo da fonteInstitut mashinovedenii͡a i metallurgii (Akademii͡a nauk SSSR), ed. Poluchenie nemetallicheskikh tugoplavkikh soedineniĭ vosstanovleniem datolitovogo kont͡sentrata. Vladivostok: DVO AN SSSR, 1991.
Encontre o texto completo da fonteKopeĭkin, V. A. Ogneupornye rastvory na fosfatnykh svi͡a︡zui͡u︡shchikh. Moskva: "Metallurgii͡a︡", 1986.
Encontre o texto completo da fonteCompany, Harbison-Walker Refractories. Modern refractory practice: With special reference to the products of Harbison-Walker Refractories Company. 5a ed. Pittsburgh, PA: Harbison-Walker Refractories Company, 1992.
Encontre o texto completo da fonteI͡A︡, Kosolapova T., ed. Nemetallicheskie tugoplavkie soedinenii͡a︡. Moskva: Metallurgii͡a︡, 1985.
Encontre o texto completo da fonteSavitskii, E. M. Physical Metallurgy of Refractory Metals and Alloys. Boston, MA: Springer US, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Refractory materials"
Götze, Jens, e Matthias Göbbels. "Refractory Materials". In Introduction to Applied Mineralogy, 125–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-64867-4_7.
Texto completo da fonteSmith, Jeffrey D., e William G. Fahrenholtz. "Refractory Oxides". In Ceramic and Glass Materials, 87–110. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-73362-3_6.
Texto completo da fonteKnabl, Wolfram, Gerhard Leichtfried e Roland Stickler. "Refractory Metals and Refractory Metal Alloys". In Springer Handbook of Materials Data, 307–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_13.
Texto completo da fonteKumashiro, Yukinobu. "Importance and Research Program of Electric Refractory Materials". In Electric Refractory Materials, 1–760. Boca Raton: CRC Press, 2000. http://dx.doi.org/10.1201/9780203908181-1.
Texto completo da fonteMeetham, Geoffrey W., e Marcel H. Van de Voorde. "Refractory Metals". In Materials for High Temperature Engineering Applications, 86–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56938-8_9.
Texto completo da fonteKipouros, Georges J., e Donald R. Sadoway. "Electroplating of Refractory Metals". In Innovations in Materials Processing, 493–503. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2411-9_27.
Texto completo da fonteJinglian, Fan, e Xu Kuangdi. "Powder Metallurgy Refractory Metal Materials". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-0740-1_1469-1.
Texto completo da fonteOxnard, Robert T. "Overview of Refractory Recycling". In Recycling of Metals and Engineercd Materials, 1351. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch119.
Texto completo da fonteStangle, Gregory C. "Example: Combustion synthesis of refractory materials". In Modelling of Materials Processing, 689–724. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5813-2_20.
Texto completo da fonteKuznetsov, S. A., S. V. Kuznetsova, E. G. Polyakov e P. T. Stangrit. "Electrochemical Production of Hafnium-Based Composite Materials". In Refractory Metals in Molten Salts, 211–18. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9135-5_22.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Refractory materials"
SANZERO, G. "Refractory composites structural materials". In 2nd International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-5264.
Texto completo da fonteVlček, Jozef, Hana Ovčačíková, Miroslava Klárová, Michaela Topinková, Jiří Burda, Marek Velička, Pavel Kovař e Karel Lang. "Refractory materials for biomass combustion". In THERMOPHYSICS 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132743.
Texto completo da fonte"Recycling of Ceramic Refractory Materials". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119230.
Texto completo da fonteCalle, Luz, Paul Hintze, Christopher Parlier, Jeffrey Sampson, Jerome Curran, Mark Kolody e Stephen Perusich. "Refractory Materials for Flame Deflector Protection". In AIAA SPACE 2010 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-8749.
Texto completo da fonteWhite, William B. "Refractory sulfides as IR window materials". In San Dieg - DL Tentative, editado por Paul Klocek. SPIE, 1990. http://dx.doi.org/10.1117/12.22484.
Texto completo da fonteCalle, Luz, Paul Hintze, Christopher Parlier, Cori Bucherl, Jeffrey Sampson, Jerome Curran, Mark Kolody e Mary Whitten. "Launch Pad Flame Trench Refractory Materials". In SpaceOps 2010 Conference: Delivering on the Dream (Hosted by NASA Marshall Space Flight Center and Organized by AIAA). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2016.
Texto completo da fonte"Recycling of Ceramic Refractory Materials: Process Steps". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119231.
Texto completo da fonteJahshan, Salim N., Richard L. Moore, Lynn B. Lundberg, Mohamed S. El-Genk e Mark D. Hoover. "Conceptual Design of a Refractory Materials Propulsion Reactor". In SPACE NUCLEAR POWER AND PROPULSION: Eleventh Symposium. AIP, 1994. http://dx.doi.org/10.1063/1.2950268.
Texto completo da fonteRaheem-Kizchery, Ayesha R., Seshu B. Desu e Richard O. Claus. "High Temperature Refractory Coating Materials For Sapphire Waveguides". In OE/FIBERS '89, editado por Eric Udd. SPIE, 1990. http://dx.doi.org/10.1117/12.963127.
Texto completo da fonteKovarik, Ondrej, Ales Materna, Jan Siegl, Jan Cizek e Jakub Klecka. "Fatigue Crack Growth in Plasma Sprayed Refractory Materials". In ITSC2018, editado por F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau e J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0140.
Texto completo da fonteRelatórios de organizações sobre o assunto "Refractory materials"
Ferber, M. K., A. Wereszczak e J. A. Hemrick. Comprehensive Creep and Thermophysical Performance of Refractory Materials. Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/885151.
Texto completo da fonteShannon, Steven, Jacob Eapen, Jon-Paul Maria e William Weber. Novel Engineered Refractory Materials for Advanced Reactor Applications. Office of Scientific and Technical Information (OSTI), março de 2016. http://dx.doi.org/10.2172/1246903.
Texto completo da fonteHemrick, James Gordon, Jeffrey D. Smith, Kelley O'Hara, Angela Rodrigues-Schroer e Colavito. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS. Office of Scientific and Technical Information (OSTI), agosto de 2012. http://dx.doi.org/10.2172/1049095.
Texto completo da fonteHemrick, James Gordon. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS. Office of Scientific and Technical Information (OSTI), setembro de 2011. http://dx.doi.org/10.2172/1024313.
Texto completo da fonteHemrick, J. G., e R. Griffin. NOvel Refractory Materials for High Alkali, High Temperature Environments. Office of Scientific and Technical Information (OSTI), agosto de 2011. http://dx.doi.org/10.2172/1024343.
Texto completo da fonteKatz, J. L. Investigation of the processes controlling the flame generation of refractory materials. Office of Scientific and Technical Information (OSTI), janeiro de 1990. http://dx.doi.org/10.2172/7249991.
Texto completo da fonteKatz, J. L. Investigation of the processes controlling the flame generation of refractory materials. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/5720588.
Texto completo da fontePanicker, Nithin, Bhagya Prabhune, Nate See, Marco Delchini, Brian Jordan, Bryan Lim, Soumya Nag, Yuri Plotnikov e Yousub Lee. Integrated Process and Materials Modeling for Development of Additive Manufacturing of Refractory Materials for Critical Applications. Office of Scientific and Technical Information (OSTI), fevereiro de 2024. http://dx.doi.org/10.2172/2397457.
Texto completo da fonteXingbo Liu, Ever Barbero, Bruce Kang, Bhaskaran Gopalakrishnan, James Headrick e Carl Irwin. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals. Office of Scientific and Technical Information (OSTI), fevereiro de 2009. http://dx.doi.org/10.2172/947111.
Texto completo da fonteHall, G. E. M., e J. C. Pelchat. The Determination of Boron and Other Refractory Elements in Geological Materials By InductivelyCoupled Plasma Emission Spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120354.
Texto completo da fonte