Literatura científica selecionada sobre o tema "Refractory ceramic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Refractory ceramic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Refractory ceramic"
Du, Weiliang, e Shengli Jin. "Discrete Element Modelling of Cold Crushing Tests Considering Various Interface Property Distributions in Ordinary Refractory Ceramics". Materials 15, n.º 21 (31 de outubro de 2022): 7650. http://dx.doi.org/10.3390/ma15217650.
Texto completo da fonteErgashev, M. M. "EXPLORING CERAMIC REFRACTORY MATERIALS: CLASSIFICATION AND TECHNOLOGICAL INNOVATIONS". International Journal of Advance Scientific Research 4, n.º 11 (1 de novembro de 2024): 17–26. http://dx.doi.org/10.37547/ijasr-04-11-04.
Texto completo da fonteVakhula, Orest, Myron Pona, Ivan Solokha, Oksana Koziy e Maria Petruk. "Ceramic Protective Coatings for Cordierite-Mullite Refractory Materials". Chemistry & Chemical Technology 15, n.º 2 (15 de maio de 2021): 247–53. http://dx.doi.org/10.23939/chcht15.02.247.
Texto completo da fonteShevtsov, S. V., I. A. Kovalev e A. S. Chernyavskii. "High-temperature nitridization of zirconium, production of ceramic and metal-ceramic refractory structures". Transaction Kola Science Centre 12, n.º 2-2021 (13 de dezembro de 2021): 279–81. http://dx.doi.org/10.37614/2307-5252.2021.2.5.055.
Texto completo da fonteDudnik, E. V., A. V. Shevchenko, A. K. Ruban, Z. A. Zaitseva, V. M. Vereshchaka, V. P. Red’ko e A. A. Chekhovskii. "Refractory and ceramic materials". Powder Metallurgy and Metal Ceramics 46, n.º 7-8 (julho de 2007): 345–56. http://dx.doi.org/10.1007/s11106-007-0055-z.
Texto completo da fonteKusiorowski, Robert. "Effect of titanium oxide addition on magnesia refractories". Journal of the Australian Ceramic Society 56, n.º 4 (20 de julho de 2020): 1583–93. http://dx.doi.org/10.1007/s41779-020-00502-z.
Texto completo da fonteJiao, Lei, e Bai Yang Jin. "Ceramic Fiber Application Research". Applied Mechanics and Materials 271-272 (dezembro de 2012): 102–6. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.102.
Texto completo da fonteSeli, Hazman, Japri Bujang e Zainal Arifin Ahmad. "Preliminary Identification of Silantek Clay as Potential Refractory". Materials Science Forum 840 (janeiro de 2016): 124–30. http://dx.doi.org/10.4028/www.scientific.net/msf.840.124.
Texto completo da fonteVakalova, T. V., N. P. Sergeev, D. T. Tolegenov, D. Zh Tolegenova e N. A. Mitina. "Red mud in high-strength ceramics production". Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture 26, n.º 2 (22 de abril de 2024): 171–84. http://dx.doi.org/10.31675/1607-1859-2024-26-2-171-184.
Texto completo da fonteVarfolomeev, M. S., e G. I. Shcherbakova. "The refractory compositions designing for the highly-heat-resistant ceramic products in the foundry practice". NOVYE OGNEUPORY (NEW REFRACTORIES), n.º 6 (26 de julho de 2018): 18–23. http://dx.doi.org/10.17073/1683-4518-2018-6-18-23.
Texto completo da fonteTeses / dissertações sobre o assunto "Refractory ceramic"
Lohner, Kevin Andrew 1974. "Microfabricated refractory ceramic structures for micro turbomachinery". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9479.
Texto completo da fonteIncludes bibliographical references (p. 103-109).
The MIT Microengine Project was initiated in 1995 as a joint effort between the Gas Turbine Laboratory (GTL) and Microsystems Technology Laboratory (MTL) to develop a MEMS-based micro-gas turbine engine. The thermodynamic requirements of power-generating turbomachinery drive the design towards high rotational speeds and high temperatures. To achieve the specified performance requires materials with high specific strength and creep resistance at elevated temperatures. The thermal and mechanical properties of silicon carbide make it an attractive candidate for such an application. Silicon carbide as well as silicon-silicon carbide hybrid structures are being designed and fabricated utilizing chemical vapor deposition of relatively thick silicon carbide layers (10-100 [mu]m) over time multiplexed deep etched silicon molds. The silicon can be selectively dissolved away to yield high aspect ratio silicon carbide structures with features that are hundreds of microns tall. Positive mold, negative mold, and hybrid Si/SiC processing techniques appear to be feasible microfabrication routes with potential for increasing microengine performance. Research has been performed to characterize the capabilities of these processes. Specimens fabricated in the course of this research show very good conformality and step coverage with a fine (~0.1 [mu]m diameter) columnar microstructure. Surface roughness (Rq) of the films is on the order of 100 nm, becoming rougher with thicker deposition. Residual stress limits the achievable thickness, as the strain energy contained within the compressive film increases its susceptibility to cracking. Room temperature biaxial mechanical testing of CVD silicon carbide exhibits a reference strength of 724 MPa with a Weibull modulus, m =16.0. This thesis documents the design trades that led to the selection of CVD SiC as the primary candidate refractory material for the microengine, and the initial experiments performed to assess its suitability and guide future material and process development.
by Kevin Andrew Lohner.
S.M.
Martin, Rachel (Rachel M. ). "Mechanical testing of rapid-prototyping refractory ceramic print media". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/86278.
Texto completo da fontePage 30 blank. Cataloged from PDF version of thesis.
Includes bibliographical references.
Additively manufactured (3D-printed) refractory alumina-silica ceramics were mechanically tested to ascertain their ultimate tensile strengths and observed to determine their dimensional consistency over the printing and post-printing process. The equipment used to perform tensile testing was designed and built for use with custom-designed tensile test samples. Two ceramic powders, V18 (electronic-grade alumina, colloidal silica, and organic content) and 403C (200-mesh mullite, organic content, and magnesium oxide), were printed into test samples on ZCorporation ZPrinter® 310 and 510 machines, before being infiltrated with tetraethylorthosilicate (TEaS), and in some cases infiltrated again with a 40% by weight suspension of silica in water (Ludox). Ludox-infiltrated V18 proved to be the strongest medium, with a UTS of 4.539 ± 1.008 MPa; non-Ludox-infiltrated V18 had a UTS of 2.071 ± 0.443 MPA; Ludox-infiltrated 403C was weakest with a UTS of 1.378 ± 0.526 MPa. Within V18, greater silica content lead to greater tensile strength, but this did not hold true for 403C. 403C displayed volumetric shrinkage of about 1.5%, while V18's volumetric shrinkage ranged from 7% to 14%.
by Rachel Martin.
S.B.
Esanu, Florin. "Self-flowing refractory castables, study of the hydraulic bond and ceramic matrix formation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq61086.pdf.
Texto completo da fonteCarlsson, Mats. "Preparation and characterisation of refractory whiskers and selected alumina composites". Doctoral thesis, Stockholm : Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-113.
Texto completo da fonteRydén, Gabriel. "Ab initio lattice dynamics and Anharmonic effects in refractory Rock-salt structure TaN ceramic". Thesis, Linköpings universitet, Teoretisk Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174208.
Texto completo da fonteAramide, FO, KK Alaneme, PA Olubambi e JO Borode. "In-Situ Synthesis of Mullite Fibers Reinforced Zircon-Zirconia Refractory Ceramic Composite from Clay Based Materials". International Journal of Materials and Chemistry, 2015. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001844.
Texto completo da fonteHilbert, Timothy J. "Factors associated with Reader Disagreement in a 20-year Radiology Study". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1242835896.
Texto completo da fonteHýbal, Ondřej. "Vývoj keramické skořepinové formy pro výrobu rozměrných Al odlitků". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382053.
Texto completo da fonteHeckman, Elizabeth Pierce. "Functionalizing Ceramic Matrix Composites by the Integration of a Metallic Substructure with Comparable Feature Size". Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621451032485832.
Texto completo da fonteKubů, Marek. "Návrh zefektivnění technologie obrábění komínové vložky". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241905.
Texto completo da fonteLivros sobre o assunto "Refractory ceramic"
DeSapio, Vincent. Refractory ceramic products. Washington, DC: Office of Industries, U.S. International Trade Commission, 1993.
Encontre o texto completo da fonteDeSapio, Vincente. Refractory ceramic products. Washington, DC: Office of Industries, U.S. International Trade Commission, 1993.
Encontre o texto completo da fonteS, Jacobson Nathan, Miller Robert A e United States. National Aeronautics and Space Administration., eds. Refractory oxide coatings on SiC ceramics. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteM, Gallois Bernard, Lee Woo Y, Pickering Michael A e Materials Research Society, eds. Chemical vapor deposition of refractory metals and ceramics III: Symposium held November 28-30, 1994, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1995.
Encontre o texto completo da fonteHocking, M. G. Metallic and ceramic coatings: Production, high temperature properties and applications. London: Longman Scientific & Technical, 1989.
Encontre o texto completo da fontePivinskiĭ, I︠U︡ E. Kvart︠s︡evai︠a︡ keramika i ogneupory. Moskva: Teploėnergetik, 2008.
Encontre o texto completo da fonteHocking, M. G. Metallic and ceramic coatings: Production, high temperature properties, and applications. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Encontre o texto completo da fonteInternational Meeting on Modern Ceramics Technologies (12th 2010 Montecatini Terme, Italy). Refractories: Recent developments in materials, production and use : 12th international congress, part 1. Stafa-Zuerich: Trans Tech Pub. ltd. on behalf of Techna Group, 2011.
Encontre o texto completo da fonteB, Dahotre Narendra, e Sudarshan T. S. 1955-, eds. Intermetallic and ceramic coatings. New York: Marcel Dekker, 1999.
Encontre o texto completo da fonteM, Hampikian Janet, Dahotre Narendra B, Minerals, Metals and Materials Society. Surface Modification and Coatings Technologies Committee., Minerals, Metals and Materials Society. Corrosion & Environmental Effects Committee. e Minerals, Metals and Materials Society. Meeting, eds. Elevated temperature coatings: science and technology III: Proceedings of a symposium sponsored by the Surface Modification and Coatings Technology Committee of the Materials Processing and Manufacturing Division (MPMD) of TMS, and by the Joint TMS/ASM Corrosion and Environmental Effects Committee of the Structural Materials Division (SMD) of TMS, held during the 1999 TMS Annual Meeting in San Diego, California, February 28-March 4, 1999. Warrendale, Penn: Minerals, Metals & Materials Society, 1999.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Refractory ceramic"
Ventura, Joe, e Daniel M. Wood. "Refractory Ceramic Fibers". In 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 31, Issue 1, 175–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470769843.ch18.
Texto completo da fonteSmith, Jeffrey D., e William G. Fahrenholtz. "Refractory Oxides". In Ceramic and Glass Materials, 87–110. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-73362-3_6.
Texto completo da fonteBennett, James P., e Kyei-Sing Kwong. "Refractory Recycling - Concept to Reality". In Ceramic Transactions Series, 3–14. 735 Ceramic Place, Westerville, Ohio 43081: The American Ceramic Society, 2012. http://dx.doi.org/10.1002/9781118371435.ch1.
Texto completo da fonteBadmos, A. Y., e S. A. Abdulkareem. "New Porosity Inducing Material for Refractory Bricks". In Ceramic Transactions Series, 137–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470930953.ch15.
Texto completo da fontePötschke, Jürgen. "Formation and Behavior of Ceramic Inclusions". In Refractory Fundamentals in Metallurgical Practice, 203–9. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-63709-4_8.
Texto completo da fonteComrie, Douglas C., e Waltraud M. Kriven. "Composite Cold Ceramic Geopolymer in a Refractory Application". In Ceramic Transactions Series, 211–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118406892.ch14.
Texto completo da fonteVarghese, B., R. Zoughi, C. DeConink, M. Velez e R. Moore. "Frequency Modulated Continuous Wave Monitoring of Refractory Walls". In Ceramic Transactions Series, 159–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407004.ch16.
Texto completo da fonteCook, R., C. Klein e H. Armstrong. "Refractory Adhesives for Bonding of Polymer Derived Ceramics". In Ceramic Transactions Series, 167–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119407270.ch17.
Texto completo da fonteZirczay, G. N. "Monolithic Refractory Problems in a Gasifier". In Ceramic Engineering and Science Proceedings, 293–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470320310.ch27.
Texto completo da fonteGoski, Dana G., Timothy M. Green e Dominic J. Loiacona. "Refractory Ceramic Lining Selection and Troubleshooting in Thermal Biomass Operations". In Ceramic Transactions Series, 37–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118585160.ch4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Refractory ceramic"
Yahya, Hamdan, Aspaniza Ahmad, Muhammad Afiq Afandi Abdul Aziz e Malek Selamat. "Effect of Calcite Addition on the Mechanical Strength of Corundum-Mullite Ceramics". In International Conference on X-Rays and Related Techniques in Research and Industry 2023, 21–27. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-z9yfky.
Texto completo da fonteBell, Samuel B. W., Bruce A. Pint, Mackenzie J. Ridley e Sebastien N. Dryepondt. "High Temperature Mechanical Behavior of Refractory Alloys with Digital Image Correlation". In AM-EPRI 2024, 62–73. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0062.
Texto completo da fonte"Recycling of Ceramic Refractory Materials". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119230.
Texto completo da fonteIshikawa, Y., e K. Hamashima. "Pt Thermal Sprayed Coating on Refractory-Bricks for Glass Melting". In ITSC2011, editado por B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima e A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0821.
Texto completo da fonteKustovskyi, Dmytro, Oleksandr Vasylchuk e Viktor Bilorusets. "The process of degradation of ceramic balls made of Si3N4-based materials in hybrid bearings". In IXth INTERNATIONAL SAMSONOV CONFERENCE “MATERIALS SCIENCE OF REFRACTORY COMPOUNDS”. Frantsevich Ukrainian Materials Research Society, 2024. http://dx.doi.org/10.62564/m4-dk1802.
Texto completo da fonteDerev'yanko, Oleksandr, Tetyana Istomina, Roman Lytvyn, Oleksandr Myslyvchenko, Dmytro Verbylo e Ostap Zgalat-Lozynskyy. "Ceramic material based on TiB2-FeSi using the reaction sintering method under SPS conditions". In IXth INTERNATIONAL SAMSONOV CONFERENCE “MATERIALS SCIENCE OF REFRACTORY COMPOUNDS”. Frantsevich Ukrainian Materials Research Society, 2024. http://dx.doi.org/10.62564/m4-od1542.
Texto completo da fonteRoot, D., J. Treadway, S. Chen e M. Pearce. "453. Exposure Data for Refractory Ceramic Fiber". In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2765139.
Texto completo da fonte"Recycling of Ceramic Refractory Materials: Process Steps". In Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119231.
Texto completo da fonteSoda, T., H. Tamura e A. B. Sawaoka. "Refractory Carbide Coatings Sprayed by Electrothermal Explosion of Conductive-Ceramic Powders". In ITSC 1998, editado por Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1351.
Texto completo da fonteFesenko, Igor, Oksana Kaidash e Nina Sergienko. "Electrical Resistivity of AlN-hBN-TiB2 Ceramic Composite". In IXth INTERNATIONAL SAMSONOV CONFERENCE “MATERIALS SCIENCE OF REFRACTORY COMPOUNDS”. Frantsevich Ukrainian Materials Research Society, 2024. http://dx.doi.org/10.62564/m4-if2339.
Texto completo da fonteRelatórios de organizações sobre o assunto "Refractory ceramic"
Dale E. Brown e Puja B. Kadolkar. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting. Office of Scientific and Technical Information (OSTI), dezembro de 2005. http://dx.doi.org/10.2172/878541.
Texto completo da fonteKadolkar, Puja, e Ronald D. Ott. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting. Office of Scientific and Technical Information (OSTI), fevereiro de 2006. http://dx.doi.org/10.2172/930713.
Texto completo da fontePaul Brown. NANOSTRUCTURED CERAMICS AND COMPOSITES FOR REFRACTORY APPLICATIONS IN COAL GASIFICATION. Office of Scientific and Technical Information (OSTI), janeiro de 2005. http://dx.doi.org/10.2172/840414.
Texto completo da fonteBesmann, Theodore M., Bernard M. Gallois e James W. Warren. Chemical Vapor Deposition of Refractory Metals and Ceramics 2. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on December 4-6, 1991. Volume 250. Fort Belvoir, VA: Defense Technical Information Center, abril de 1993. http://dx.doi.org/10.21236/ada265072.
Texto completo da fonteCriteria for a recommended standard: occupational exposure to refractory ceramic fibers. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, maio de 2006. http://dx.doi.org/10.26616/nioshpub2006123.
Texto completo da fonteSurvey report: an engineering control evaluation for reducing exposure to refractory ceramic fibers during sanding conducted at Fireline, Inc. Youngstown, Ohio. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, abril de 2003. http://dx.doi.org/10.26616/nioshephb24611a.
Texto completo da fonte