Siga este link para ver outros tipos de publicações sobre o tema: Reconnaissance faciale (Informatique).

Teses / dissertações sobre o tema "Reconnaissance faciale (Informatique)"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 34 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Reconnaissance faciale (Informatique)".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kose, Neslihan. "Leurrage et dissimulation en reconnaissance faciale : analyses et contre attaques". Electronic Thesis or Diss., Paris, ENST, 2014. http://www.theses.fr/2014ENST0020.

Texto completo da fonte
Resumo:
La Reconnaissance automatique des personnes est devenue un sujet de plus en plus important avec l'augmentation constante des besoins en sécurité. De nombreux systèmes biométriques existent. Ils utilisent différentes caractéristiques humaines. Parmi tous les traits biométriques, la reconnaissance faciale inclut des aspects positifs en termes d'accessibilité et de fiabilité. Dans cette thèse, deux défis en reconnaissance faciales sont étudiés. Le premier est le leurrage. Le leurrage en reconnaissance faciale est présenté. Des contre-mesures permettant d'améliorer les systèmes actuels sont proposés. A cet effet, les attaques basées sur des photographies 2D ou des masques 3D sont analysées. Le second défi exploré dans cette thèse est lié aux variations dues à des altérations du visage (i.e. chirurgie plastique), maquillage et accessoires pour le visage (e.g. occultations par la présence de lunettes). L'impact de ces variations en reconnaissance de visage est étudiée séparément. Ensuite, des techniques robustes contre les variations de camouflage sont proposées
Human recognition has become an important topic as the need and investments for security applications grow continuously. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. In the thesis, two challenges in face recognition are analyzed. The first one is face spoofing. Spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. For this purpose, both 2D photograph and 3D mask attacks are analyzed. The second challenge explored in the thesis is disguise variations, which are due to facial alterations, facial makeup and facial accessories (occlusions). The impact of these disguise variations on face recognition is explored, separately. Then, techniques which are robust against disguise variations are proposed
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kose, Neslihan. "Leurrage et dissimulation en reconnaissance faciale : analyses et contre attaques". Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0020/document.

Texto completo da fonte
Resumo:
La Reconnaissance automatique des personnes est devenue un sujet de plus en plus important avec l'augmentation constante des besoins en sécurité. De nombreux systèmes biométriques existent. Ils utilisent différentes caractéristiques humaines. Parmi tous les traits biométriques, la reconnaissance faciale inclut des aspects positifs en termes d'accessibilité et de fiabilité. Dans cette thèse, deux défis en reconnaissance faciales sont étudiés. Le premier est le leurrage. Le leurrage en reconnaissance faciale est présenté. Des contre-mesures permettant d'améliorer les systèmes actuels sont proposés. A cet effet, les attaques basées sur des photographies 2D ou des masques 3D sont analysées. Le second défi exploré dans cette thèse est lié aux variations dues à des altérations du visage (i.e. chirurgie plastique), maquillage et accessoires pour le visage (e.g. occultations par la présence de lunettes). L'impact de ces variations en reconnaissance de visage est étudiée séparément. Ensuite, des techniques robustes contre les variations de camouflage sont proposées
Human recognition has become an important topic as the need and investments for security applications grow continuously. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. In the thesis, two challenges in face recognition are analyzed. The first one is face spoofing. Spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. For this purpose, both 2D photograph and 3D mask attacks are analyzed. The second challenge explored in the thesis is disguise variations, which are due to facial alterations, facial makeup and facial accessories (occlusions). The impact of these disguise variations on face recognition is explored, separately. Then, techniques which are robust against disguise variations are proposed
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Abdat, Faiza. "Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques". Electronic Thesis or Diss., Metz, 2010. http://www.theses.fr/2010METZ035S.

Texto completo da fonte
Resumo:
Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours
This thesis presents a generic method for automatic recognition of emotions from a bimodal system based on facial expressions and physiological signals. This data processing approach leads to better extraction of information and is more reliable than single modality. The proposed algorithm for facial expression recognition is based on the distance variation of facial muscles from the neutral state and on the classification by means of Support Vector Machines (SVM). And the emotion recognition from physiological signals is based on the classification of statistical parameters by the same classifier. In order to have a more reliable recognition system, we have combined the facial expressions and physiological signals. The direct combination of such information is not trivial giving the differences of characteristics (such as frequency, amplitude, variation, and dimensionality). To remedy this, we have merged the information at different levels of implementation. At feature-level fusion, we have tested the mutual information approach for selecting the most relevant and principal component analysis to reduce their dimensionality. For decision-level fusion we have implemented two methods; the first based on voting process and another based on dynamic Bayesian networks. The optimal results were obtained with the fusion of features based on Principal Component Analysis. These methods have been tested on a database developed in our laboratory from healthy subjects and inducing with IAPS pictures. A self-assessment step has been applied to all subjects in order to improve the annotation of images used for induction. The obtained results have shown good performance even in presence of variability among individuals and the emotional state variability for several days
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Abdat, Faiza. "Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques". Thesis, Metz, 2010. http://www.theses.fr/2010METZ035S/document.

Texto completo da fonte
Resumo:
Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours
This thesis presents a generic method for automatic recognition of emotions from a bimodal system based on facial expressions and physiological signals. This data processing approach leads to better extraction of information and is more reliable than single modality. The proposed algorithm for facial expression recognition is based on the distance variation of facial muscles from the neutral state and on the classification by means of Support Vector Machines (SVM). And the emotion recognition from physiological signals is based on the classification of statistical parameters by the same classifier. In order to have a more reliable recognition system, we have combined the facial expressions and physiological signals. The direct combination of such information is not trivial giving the differences of characteristics (such as frequency, amplitude, variation, and dimensionality). To remedy this, we have merged the information at different levels of implementation. At feature-level fusion, we have tested the mutual information approach for selecting the most relevant and principal component analysis to reduce their dimensionality. For decision-level fusion we have implemented two methods; the first based on voting process and another based on dynamic Bayesian networks. The optimal results were obtained with the fusion of features based on Principal Component Analysis. These methods have been tested on a database developed in our laboratory from healthy subjects and inducing with IAPS pictures. A self-assessment step has been applied to all subjects in order to improve the annotation of images used for induction. The obtained results have shown good performance even in presence of variability among individuals and the emotional state variability for several days
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Le, Meur Julien. "Conception, assemblage, optimisation et test de modules intégrés d'illumination structurée à base d'éléments optiques diffractifs : application particulière à la reconnaissance faciale". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0121.

Texto completo da fonte
Resumo:
Ce travail de thèse visait à concevoir, assembler, optimiser et tester des modules d’illumination structurée à base d’éléments optiques diffractifs (EODs) pour une application de reconnaissance faciale sur appareils mobiles (smartphones, tablettes). L’intégration des modules dans des smartphones impliquait de fortes contraintes de miniaturisation, de consommation énergétique, de coût, et de sécurité laser. L’élément clé de chaque module était un EOD de Fourier à angle de diffraction supérieur à la limite du modèle scalaire paraxial de la diffraction permettant d’illuminer la surface d’un visage à une distance d’une portée de bras. Afin de faciliter la conception (relâchement des contraintes angulaires), la fabrication (minimisation de l’efficacité de diffraction à l’ordre 0) et la réplication des EODs, le premier axe de travail a consisté à concevoir et à fabriquer des dispositifs hybrides « agrandisseurs d’angles » combinant des EODs et des optiques divergentes conventionnelles. Le second volet portait sur la conception des EODs qui devait prendre en considération à la fois les paramètres des systèmes bas coût d’illumination et d’acquisition d’images utilisés, notamment pour contrôler la présence de granularité laser (« speckle ») sur la figure de diffraction souhaitée (contrôle imposé par les algorithmes de reconnaissance faciale et de détection de fraudes utilisés). Le savoir-faire acquis dans le domaine de l’illumination structurée générée par des EODs a été étendu et transposé à trois autres applications dans les domaines de la vibrométrie, de l’aviation civile et commerciale, et de l’aviation militaire
This thesis work aimed to design, assemble, optimize and test structured illumination modules based on diffractive optical elements (DOEs) for facial recognition application on mobile devices (smartphones, tablets). The integration of modules into smartphones involved significant constraints in terms of miniaturization, energy consumption, cost and laser safety. The key element of each module was a Fourier DOE with a diffraction angle greater than the limit of the paraxial scalar diffraction model to illuminate the surface of a face at a distance of an arm reach. In order to facilitate the design (relaxation of angular constraints), manufacturing (minimization of the zero order diffraction efficiency) and replication of DOEs, the first axis of research consisted in designing and manufacturing hybrid "angle enlarger" devices combining DOEs and conventional divergent optics. The second part concerned the design of the DOEs, which had to take into account both the parameters of the low-cost illumination and image acquisition systems used, in particular to control the presence of laser speckle on the desired diffraction pattern (control imposed by the facial recognition and fraud detection algorithms used). The know-how acquired in the field of structured illumination generated by DOEs has been extended and transposed to three other applications in the fields of vibrometry, civil and commercial aviation, and military aviation
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Deramgozin, Mohammadmahdi. "Développement de modèles de reconnaissance des expressions faciales à base d’apprentissage profond pour les applications embarquées". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0286.

Texto completo da fonte
Resumo:
Le domaine de la Reconnaissance des Émotions Faciales (FER) est est d'une importance capitale pour faire progresser les interactions homme-machine et trouve sa place dans de nombreuses applications comme par exemple le domaine de la santé pour traiter la dépression et l'anxiété. En utilisant des Réseaux Neuronaux Convolutifs (CNN), cette thèse présente une série de modèles visant à optimiser la détection et l'interprétation des émotions. Le modèle initial présenté dans cette thèse est de faible complexité et économe en ressources lui permettant de rivaliser favorablement avec les solutions de l'état de l'art sur un nombre limité de jeux de données, ce qui en fait une bonne base pour les systèmes à ressources limitées. Pour identifier et capturer toute la complexité et l'ambiguïté des émotions humaines, ce modèle initial est amélioré en intégrant les Unités d'Action faciales (AU). Cette approche affine non seulement la détection des émotions mais fournit également une interprétabilité des décisions fournies par le modèle en identifiant des AU spécifiques liées à chaque émotion. Une amélioration significative est atteinte en introduisant des mécanismes d'attention neuronale—à la fois spatiaux et par canal— au modèle initial. Ainsi, le modèle basé sur ces mécanismes d'attention se focalise uniquement sur les caractéristiques faciales les plus saillantes. Cela permet au modèle CNN de s'adapter bien aux scénarios du monde réel, tels que des expressions faciales partiellement obscurcies ou subtiles. La thèse aboutit à un modèle CNN optimisé et efficace en termes de calcul et d'empreinte mémoire, le rendant parfaitement adapté pour les environnements à ressources limitées comme les systèmes embarqués. Tout en fournissant une solution robuste pour la FER, des perspectives et voies pour des travaux futurs, tels que des applications en temps réel et des techniques avancées pour l'interprétabilité du modèle, sont également identifiées
The field of Facial Emotion Recognition (FER) is pivotal in advancing human-machine interactions and finds essential applications in healthcare for conditions like depression and anxiety. Leveraging Convolutional Neural Networks (CNNs), this thesis presents a progression of models aimed at optimizing emotion detection and interpretation. The initial model is resource-frugal but competes favorably with state-of-the-art solutions, making it a strong candidate for embedded systems constrained in computational and memory resources. To capture the complexity and ambiguity of human emotions, the research work presented in this thesis enhances this CNN-based foundational model by incorporating facial Action Units (AUs). This approach not only refines emotion detection but also provides interpretability by identifying specific AUs tied to each emotion. Further sophistication is achieved by introducing neural attention mechanisms—both spatial and channel-based—improving the model's focus on salient facial features. This makes the CNN-based model adapted well to real-world scenarios, such as partially obscured or subtle facial expressions. Based on the previous results, in this thesis we propose finally an optimized, yet computationally efficient, CNN model that is ideal for resource-limited environments like embedded systems. While it provides a robust solution for FER, this research also identifies perspectives for future work, such as real-time applications and advanced techniques for model interpretability
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ballihi, Lahoucine. "Biométrie faciale 3D par apprentissage des caractéristiques géométriques : Application à la reconnaissance des visages et à la classification du genre". Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2012. http://tel.archives-ouvertes.fr/tel-00726299.

Texto completo da fonte
Resumo:
La biométrie du visage a suscité, ces derniers temps, l'intérêt grandissant de la communauté scientifique et des industriels de la biométrie vue son caractère naturel, sans contact et non-intrusif. Néanmoins, les performances des systèmes basés sur les images 2D sont affectées par différents types de variabilités comme la pose, les conditions d'éclairage, les occultations et les expressions faciales. Avec la disponibilité de caméras 3D capables d'acquérir la forme tridimensionnelle, moins sensibles aux changements d'illumination et de pose, plusieurs travaux de recherche se sont tournés vers l'étude de cette nouvelle modalité. En revanche, d'autres défis apparaissent comme les déformations de la forme faciales causées par les expressions et le temps de calcul que requièrent les approches développées. Cette thèse s'inscrit dans ce paradigme en proposant de coupler la géométrie Riemannienne avec les techniques d'apprentissage pour une biométrie faciale 3D efficace et robuste aux changements d'expressions. Après une étape de pré-traitement, nous proposons de représenter les surfaces faciales par des collections de courbes 3D qui captent localement leurs formes. Nous utilisons un cadre géométrique existant pour obtenir les déformations " optimales " entre les courbes ainsi que les distances les séparant sur une variété Riemannienne (espace des formes des courbes). Nous appliquons, par la suite, des techniques d'apprentissage afin de déterminer les courbes les plus pertinentes pour deux applications de la biométrie du visage : la reconnaissance d'identité et la classification du genre. Les résultats obtenus sur le benchmark de référence FRGC v2 et leurs comparaison avec les travaux de l'état de l'art confirment tout l'intérêt de coupler l'analyse locale de la forme par une approche géométrique (possibilité de calculer des moyennes, etc.) avec des techniques d'apprentissage (Basting, etc.) pour gagner en temps de calcul et en performances.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Al, chanti Dawood. "Analyse Automatique des Macro et Micro Expressions Faciales : Détection et Reconnaissance par Machine Learning". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT058.

Texto completo da fonte
Resumo:
L’analyse automatique des expressions faciales représente à l’heure actuelle une problématique importante associée à de multiples applications telles que la reconnaissance de visages ou encore les interactions homme machine. Dans cette thèse, nous nous attaquons au problème de la reconnaissance d’expressions faciales à partir d’une image ou d’une séquence d’images. Nous abordons le problème sous trois angles.Tout d’abord, nous étudions les macro-expressions faciales et nous proposons de comparer l’efficacité de trois descripteurs différents. Cela conduit au développement d’un algorithme de reconnaissance d’expressions basé sur des descripteurs bas niveau encodés dans un modèle de type sac de mots, puis d’un algorithme basé sur des descripteurs de moyen niveau associés à une représentation éparse et enfin d’un algorithme d’apprentissage profond tenant compte de descripteurs haut niveau. Notre objectif lors de la comparaison de ces trois algorithmes est de trouver la représentation des informations de visages la plus discriminante pour reconnaitre des expressions faciales en étant donc capable de s’affranchir des sources de variabilités que sont les facteurs de variabilité intrinsèques tels que l’apparence du visage ou la manière de réaliser une expression donnée et les facteurs de variabilité extrinsèques tels que les variations d’illumination, de pose, d’échelle, de résolution, de bruit ou d’occultations. Nous examinons aussi l’apport de descripteurs spatio-temporels capables de prendre en compte des informations dynamiques utiles pour séparer les classes ambigües.La grosse limitation des méthodes de classification supervisée est qu’elles sont très coûteuses en termes de labélisation de données. Afin de s’affranchir en partie de cette limitation, nous avons étudié dans un second temps, comment utiliser des méthodes de transfert d’apprentissage de manière à essayer d’étendre les modèles appris sur un ensemble donné de classes d’émotions à des expressions inconnues du processus d’apprentissage. Ainsi nous nous sommes intéressés à l’adaptation de domaine et à l’apprentissage avec peu ou pas de données labélisées. La méthode proposée nous permet de traiter des données non labélisées provenant de distributions différentes de celles du domaine source de l’apprentissage ou encore des données qui ne concernent pas les mêmes labels mais qui partagent le même contexte. Le transfert de connaissance s’appuie sur un apprentissage euclidien et des réseaux de neurones convolutifs de manière à définir une fonction de mise en correspondance entre les informations visuelles provenant des expressions faciales et un espace sémantique issu d’un modèle de langage naturel.Dans un troisième temps, nous nous sommes intéressés à la reconnaissance des micro-expressions faciales. Nous proposons un algorithme destiné à localiser ces micro-expressions dans une séquence d’images depuis l’image initiale (onset image) jusqu’à l’image finale (offset image) et à déterminer les régions des images qui sont affectées par les micro-déformations associées aux micro-expressions. Le problème est abordé sous un angle de détection d’anomalies ce qui se justifie par le fait que les déformations engendrées par les micro-expressions sont a priori un phénomène plus rare que celles produites par toutes les autres causes de déformation du visage telles que les macro-expressions, les clignements des yeux, les mouvements de la tête… Ainsi nous proposons un réseau de neurones auto-encodeur récurrent destiné à capturer les changements spatiaux et temporels associés à toutes les déformations du visage autres que celles dues aux micro-expressions. Ensuite, nous apprenons un modèle statistique basé sur un mélange de gaussiennes afin d’estimer la densité de probabilité de ces déformations autres que celles dues aux micro-expressions.Tous nos algorithmes sont testés et évalués sur des bases d’expressions faciales actées et/ou spontanées
Facial expression analysis is an important problem in many biometric tasks, such as face recognition, face animation, affective computing and human computer interface. In this thesis, we aim at analyzing facial expressions of a face using images and video sequences. We divided the problem into three leading parts.First, we study Macro Facial Expressions for Emotion Recognition and we propose three different levels of feature representations. Low-level feature through a Bag of Visual Word model, mid-level feature through Sparse Representation and hierarchical features through a Deep Learning based method. The objective of doing this is to find the most effective and efficient representation that contains distinctive information of expressions and that overcomes various challenges coming from: 1) intrinsic factors such as appearance and expressiveness variability and 2) extrinsic factors such as illumination, pose, scale and imaging parameters, e.g., resolution, focus, imaging, noise. Then, we incorporate the time dimension to extract spatio-temporal features with the objective to describe subtle feature deformations to discriminate ambiguous classes.Second, we direct our research toward transfer learning, where we aim at Adapting Facial Expression Category Models to New Domains and Tasks. Thus we study domain adaptation and zero shot learning for developing a method that solves the two tasks jointly. Our method is suitable for unlabelled target datasets coming from different data distributions than the source domain and for unlabelled target datasets with different label distributions but sharing the same context as the source domain. Therefore, to permit knowledge transfer between domains and tasks, we use Euclidean learning and Convolutional Neural Networks to design a mapping function that map the visual information coming from facial expressions into a semantic space coming from a Natural Language model that encodes the visual attribute description or use the label information. The consistency between the two subspaces is maximized by aligning them using the visual feature distribution.Third, we study Micro Facial Expression Detection. We propose an algorithm to spot micro-expression segments including the onset and offset frames and to spatially pinpoint in each image space the regions involved in the micro-facial muscle movements. The problem is formulated into Anomaly Detection due to the fact that micro-expressions occur infrequently and thus leading to few data generation compared to natural facial behaviours. In this manner, first, we propose a deep Recurrent Convolutional Auto-Encoder to capture spatial and motion feature changes of natural facial behaviours. Then, a statistical based model for estimating the probability density function of normal facial behaviours while associating a discriminating score to spot micro-expressions is learned based on a Gaussian Mixture Model. Finally, an adaptive thresholding technique for identifying micro expressions from natural facial behaviour is proposed.Our algorithms are tested over deliberate and spontaneous facial expression benchmarks
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Huang, Di. "Robust face recognition based on three dimensional data". Phd thesis, Ecole Centrale de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00693158.

Texto completo da fonte
Resumo:
The face is one of the best biometrics for person identification and verification related applications, because it is natural, non-intrusive, and socially weIl accepted. Unfortunately, an human faces are similar to each other and hence offer low distinctiveness as compared with other biometrics, e.g., fingerprints and irises. Furthermore, when employing facial texture images, intra-class variations due to factors as diverse as illumination and pose changes are usually greater than inter-class ones, making 2D face recognition far from reliable in the real condition. Recently, 3D face data have been extensively investigated by the research community to deal with the unsolved issues in 2D face recognition, Le., illumination and pose changes. This Ph.D thesis is dedicated to robust face recognition based on three dimensional data, including only 3D shape based face recognition, textured 3D face recognition as well as asymmetric 3D-2D face recognition. In only 3D shape-based face recognition, since 3D face data, such as facial pointclouds and facial scans, are theoretically insensitive to lighting variations and generally allow easy pose correction using an ICP-based registration step, the key problem mainly lies in how to represent 3D facial surfaces accurately and achieve matching that is robust to facial expression changes. In this thesis, we design an effective and efficient approach in only 3D shape based face recognition. For facial description, we propose a novel geometric representation based on extended Local Binary Pattern (eLBP) depth maps, and it can comprehensively describe local geometry changes of 3D facial surfaces; while a 81FT -based local matching process further improved by facial component and configuration constraints is proposed to associate keypoints between corresponding facial representations of different facial scans belonging to the same subject. Evaluated on the FRGC v2.0 and Gavab databases, the proposed approach proves its effectiveness. Furthermore, due tq the use of local matching, it does not require registration for nearly frontal facial scans and only needs a coarse alignment for the ones with severe pose variations, in contrast to most of the related tasks that are based on a time-consuming fine registration step. Considering that most of the current 3D imaging systems deliver 3D face models along with their aligned texture counterpart, a major trend in the literature is to adopt both the 3D shape and 2D texture based modalities, arguing that the joint use of both clues can generally provides more accurate and robust performance than utilizing only either of the single modality. Two important factors in this issue are facial representation on both types of data as well as result fusion. In this thesis, we propose a biological vision-based facial representation, named Oriented Gradient Maps (OGMs), which can be applied to both facial range and texture images. The OGMs simulate the response of complex neurons to gradient information within a given neighborhood and have properties of being highly distinctive and robust to affine illumination and geometric transformations. The previously proposed matching process is then adopted to calculate similarity measurements between probe and gallery faces. Because the biological vision-based facial representation produces an OGM for each quantized orientation of facial range and texture images, we finally use a score level fusion strategy that optimizes weights by a genetic algorithm in a learning pro cess. The experimental results achieved on the FRGC v2.0 and 3DTEC datasets display the effectiveness of the proposed biological vision-based facial description and the optimized weighted sum fusion. [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ben, Soltana Wael. "Optimisation de stratégies de fusion pour la reconnaissance de visages 3D". Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-01070638.

Texto completo da fonte
Resumo:
La reconnaissance faciale (RF) est un domaine de recherche très actif en raison de ses nombreuses applications dans le domaine de la vision par ordinateur en général et en biométrie en particulier. Cet intérêt est motivé par plusieurs raisons. D'abord, le visage est universel. Ensuite, il est le moyen le plus naturel par les êtres humains de s'identifier les uns des autres. Enfin, le visage en tant que modalité biométrique est présente un caractère non intrusif, ce qui le distingue d'autres modalités biométriques comme l'iris ou l'emprunte digitale. La RF représente aussi des défis scientifiques importants. D'abord parce que tous les visages humains ont des configurations similaires. Ensuite, avec les images faciales 2D que l'on peut acquérir facilement, la variation intra-classe, due à des facteurs comme le changement de poses et de conditions d'éclairage, les variations d'expressions faciales, le vieillissement, est bien plus importante que la variation inter-classe.Avec l'arrivée des systèmes d'acquisition 3D capables de capturer la profondeur d'objets, la reconnaissance faciale 3D (RF 3D) a émergé comme une voie prometteuse pour traiter les deux problèmes non résolus en 2D, à savoir les variations de pose et d'éclairage. En effet, les caméras 3D délivrent généralement les scans 3D de visages avec leurs images de texture alignées. Une solution en RF 3D peut donc tirer parti d'une fusion avisée d'informations de forme en 3D et celles de texture en 2D. En effet, étant donné que les scans 3D de visage offrent à la fois les surfaces faciales pour la modalité 3D pure et les images de texture 2D alignées, le nombre de possibilités de fusion pour optimiser le taux de reconnaissance est donc considérable. L'optimisation de stratégies de fusion pour une meilleure RF 3D est l'objectif principal de nos travaux de recherche menés dans cette thèse.Dans l'état d'art, diverses stratégies de fusion ont été proposées pour la reconnaissance de visages 3D, allant de la fusion précoce "early fusion" opérant au niveau de caractéristiques à la fusion tardive "late fusion" sur les sorties de classifieurs, en passant par de nombreuses stratégies intermédiaires. Pour les stratégies de fusion tardive, nous distinguons encore des combinaisons en parallèle, en cascade ou multi-niveaux. Une exploration exhaustive d'un tel espace étant impossible, il faut donc recourir à des solutions heuristiques qui constituent nos démarches de base dans le cadre des travaux de cette thèse.En plus, en s'inscrivant dans un cadre de systèmes biométriques, les critères d'optimalité des stratégies de fusion restent des questions primordiales. En effet, une stratégie de fusion est dite optimisée si elle est capable d'intégrer et de tirer parti des différentes modalités et, plus largement, des différentes informations extraites lors du processus de reconnaissance quelque soit leur niveau d'abstraction et, par conséquent, de difficulté.Pour surmonter toutes ces difficultés et proposer une solution optimisée, notre démarche s'appuie d'une part sur l'apprentissage qui permet de qualifier sur des données d'entrainement les experts 2D ou 3D, selon des critères de performance comme ERR, et d'autre part l'utilisation de stratégie d'optimisation heuristique comme le recuit simulé qui permet d'optimiser les mélanges des experts à fusionner. [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Lemaire, Pierre. "Contributions à l'analyse de visages en 3D : approche régions, approche holistique et étude de dégradations". Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01002114.

Texto completo da fonte
Resumo:
Historiquement et socialement, le visage est chez l'humain une modalité de prédilection pour déterminer l'identité et l'état émotionnel d'une personne. Il est naturellement exploité en vision par ordinateur pour les problèmes de reconnaissance de personnes et d'émotions. Les algorithmes d'analyse faciale automatique doivent relever de nombreux défis : ils doivent être robustes aux conditions d'acquisition ainsi qu'aux expressions du visage, à l'identité, au vieillissement ou aux occultations selon le scénario. La modalité 3D a ainsi été récemment investiguée. Elle a l'avantage de permettre aux algorithmes d'être, en principe, robustes aux conditions d'éclairage ainsi qu'à la pose. Cette thèse est consacrée à l'analyse de visages en 3D, et plus précisément la reconnaissance faciale ainsi que la reconnaissance d'expressions faciales en 3D sans texture. Nous avons dans un premier temps axé notre travail sur l'apport que pouvait constituer une approche régions aux problèmes d'analyse faciale en 3D. L'idée générale est que le visage, pour réaliser les expressions faciales, est déformé localement par l'activation de muscles ou de groupes musculaires. Il est alors concevable de décomposer le visage en régions mimiques et statiques, et d'en tirer ainsi profit en analyse faciale. Nous avons proposé une paramétrisation spécifique, basée sur les distances géodésiques, pour rendre la localisation des régions mimiques et statiques le plus robustes possible aux expressions. Nous avons également proposé une approche régions pour la reconnaissance d'expressions du visage, qui permet de compenser les erreurs liées à la localisation automatique de points d'intérêt. Les deux approches proposées dans ce chapitre ont été évaluées sur des bases standards de l'état de l'art. Nous avons également souhaité aborder le problème de l'analyse faciale en 3D sous un autre angle, en adoptant un système de cartes de représentation de la surface 3D. Nous avons ainsi proposé de projeter sur le plan 2D des informations liées à la topologie de la surface 3D, à l'aide d'un descripteur géométrique inspiré d'une mesure de courbure moyenne. Les problèmes de reconnaissance faciale et de reconnaissance d'expressions 3D sont alors ramenés à ceux de l'analyse faciale en 2D. Nous avons par exemple utilisé SIFT pour l'extraction puis l'appariement de points d'intérêt en reconnaissance faciale. En reconnaissance d'expressions, nous avons utilisé une méthode de description des visages basée sur les histogrammes de gradients orientés, puis classé les expressions à l'aide de SVM multi-classes. Dans les deux cas, une méthode de fusion simple permet l'agrégation des résultats obtenus à différentes échelles. Ces deux propositions ont été évaluées sur la base BU-3DFE, montrant de bonnes performances tout en étant complètement automatiques. Enfin, nous nous sommes intéressés à l'impact des dégradations des modèles 3D sur les performances des algorithmes d'analyse faciale. Ces dégradations peuvent avoir plusieurs origines, de la capture physique du visage humain au traitement des données en vue de leur interprétation par l'algorithme. Après une étude des origines et une théorisation des types de dégradations potentielles, nous avons défini une méthodologie permettant de chiffrer leur impact sur des algorithmes d'analyse faciale en 3D. Le principe est d'exploiter une base de données considérée sans défauts, puis de lui appliquer des dégradations canoniques et quantifiables. Les algorithmes d'analyse sont alors testés en comparaison sur les bases dégradées et originales. Nous avons ainsi comparé le comportement de 4 algorithmes de reconnaissance faciale en 3D, ainsi que leur fusion, en présence de dégradations, validant par la diversité des résultats obtenus la pertinence de ce type d'évaluation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zhao, Xi. "3D face analysis : landmarking, expression recognition and beyond". Phd thesis, Ecole Centrale de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00599660.

Texto completo da fonte
Resumo:
This Ph.D thesis work is dedicated to automatic facial analysis in 3D, including facial landmarking and facial expression recognition. Indeed, facial expression plays an important role both in verbal and non verbal communication, and in expressing emotions. Thus, automatic facial expression recognition has various purposes and applications and particularly is at the heart of "intelligent" human-centered human/computer(robot) interfaces. Meanwhile, automatic landmarking provides aprior knowledge on location of face landmarks, which is required by many face analysis methods such as face segmentation and feature extraction used for instance for expression recognition. The purpose of this thesis is thus to elaborate 3D landmarking and facial expression recognition approaches for finally proposing an automatic facial activity (facial expression and action unit) recognition solution.In this work, we have proposed a Bayesian Belief Network (BBN) for recognizing facial activities, such as facial expressions and facial action units. A StatisticalFacial feAture Model (SFAM) has also been designed to first automatically locateface landmarks so that a fully automatic facial expression recognition system can be formed by combining the SFAM and the BBN. The key contributions are the followings. First, we have proposed to build a morphable partial face model, named SFAM, based on Principle Component Analysis. This model allows to learn boththe global variations in face landmark configuration and the local ones in terms of texture and local geometry around each landmark. Various partial face instances can be generated from SFAM by varying model parameters. Secondly, we have developed a landmarking algorithm based on the minimization an objective function describing the correlation between model instances and query faces. Thirdly, we have designed a Bayesian Belief Network with a structure describing the casual relationships among subjects, expressions and facial features. Facial expression oraction units are modelled as the states of the expression node and are recognized by identifying the maximum of beliefs of all states. We have also proposed a novel method for BBN parameter inference using a statistical feature model that can beconsidered as an extension of SFAM. Finally, in order to enrich information usedfor 3D face analysis, and particularly 3D facial expression recognition, we have also elaborated a 3D face feature, named SGAND, to characterize the geometry property of a point on 3D face mesh using its surrounding points.The effectiveness of all these methods has been evaluated on FRGC, BU3DFEand Bosphorus datasets for facial landmarking as well as BU3DFE and Bosphorus datasets for facial activity (expression and action unit) recognition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Peyrard, Clément. "Single image super-resolution based on neural networks for text and face recognition". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI083/document.

Texto completo da fonte
Resumo:
Cette thèse porte sur les méthodes de super-résolution (SR) pour l’amélioration des performances des systèmes de reconnaissance automatique (OCR, reconnaissance faciale). Les méthodes de Super-Résolution (SR) permettent de générer des images haute résolution (HR) à partir d’images basse résolution (BR). Contrairement à un rééchantillonage par interpolation, elles restituent les hautes fréquences spatiales et compensent les artéfacts (flou, crénelures). Parmi elles, les méthodes d’apprentissage automatique telles que les réseaux de neurones artificiels permettent d’apprendre et de modéliser la relation entre les images BR et HR à partir d’exemples. Ce travail démontre l’intérêt des méthodes de SR à base de réseaux de neurones pour les systèmes de reconnaissance automatique. Les réseaux de neurones à convolutions sont particulièrement adaptés puisqu’ils peuvent être entraînés à extraire des caractéristiques non-linéaires bidimensionnelles pertinentes tout en apprenant la correspondance entre les espaces BR et HR. Sur des images de type documents, la méthode proposée permet d’améliorer la précision en reconnaissance de caractère de +7.85 points par rapport à une simple interpolation. La création d’une base d’images annotée et l’organisation d’une compétition internationale (ICDAR2015) ont souligné l’intérêt et la pertinence de telles approches. Pour les images de visages, les caractéristiques faciales sont cruciales pour la reconnaissance automatique. Une méthode en deux étapes est proposée dans laquelle la qualité de l’image est d’abord globalement améliorée, pour ensuite se focaliser sur les caractéristiques essentielles grâce à des modèles spécifiques. Les performances d’un système de vérification faciale se trouvent améliorées de +6.91 à +8.15 points. Enfin, pour le traitement d’images BR en conditions réelles, l’utilisation de réseaux de neurones profonds permet d’absorber la variabilité des noyaux de flous caractérisant l’image BR, et produire des images HR ayant des statistiques naturelles sans connaissance du modèle d’observation exact
This thesis is focussed on super-resolution (SR) methods for improving automatic recognition system (Optical Character Recognition, face recognition) in realistic contexts. SR methods allow to generate high resolution images from low resolution ones. Unlike upsampling methods such as interpolation, they restore spatial high frequencies and compensate artefacts such as blur or jaggy edges. In particular, example-based approaches learn and model the relationship between low and high resolution spaces via pairs of low and high resolution images. Artificial Neural Networks are among the most efficient systems to address this problem. This work demonstrate the interest of SR methods based on neural networks for improved automatic recognition systems. By adapting the data, it is possible to train such Machine Learning algorithms to produce high-resolution images. Convolutional Neural Networks are especially efficient as they are trained to simultaneously extract relevant non-linear features while learning the mapping between low and high resolution spaces. On document text images, the proposed method improves OCR accuracy by +7.85 points compared with simple interpolation. The creation of an annotated image dataset and the organisation of an international competition (ICDAR2015) highlighted the interest and the relevance of such approaches. Moreover, if a priori knowledge is available, it can be used by a suitable network architecture. For facial images, face features are critical for automatic recognition. A two step method is proposed in which image resolution is first improved, followed by specialised models that focus on the essential features. An off-the-shelf face verification system has its performance improved from +6.91 up to +8.15 points. Finally, to address the variability of real-world low-resolution images, deep neural networks allow to absorb the diversity of the blurring kernels that characterise the low-resolution images. With a single model, high-resolution images are produced with natural image statistics, without any knowledge of the actual observation model of the low-resolution image
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Baccouche, Moez. "Apprentissage neuronal de caractéristiques spatio-temporelles pour la classification automatique de séquences vidéo". Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00932662.

Texto completo da fonte
Resumo:
Cette thèse s'intéresse à la problématique de la classification automatique des séquences vidéo. L'idée est de se démarquer de la méthodologie dominante qui se base sur l'utilisation de caractéristiques conçues manuellement, et de proposer des modèles qui soient les plus génériques possibles et indépendants du domaine. Ceci est fait en automatisant la phase d'extraction des caractéristiques, qui sont dans notre cas générées par apprentissage à partir d'exemples, sans aucune connaissance a priori. Nous nous appuyons pour ce faire sur des travaux existants sur les modèles neuronaux pour la reconnaissance d'objets dans les images fixes, et nous étudions leur extension au cas de la vidéo. Plus concrètement, nous proposons deux modèles d'apprentissage des caractéristiques spatio-temporelles pour la classification vidéo : (i) Un modèle d'apprentissage supervisé profond, qui peut être vu comme une extension des modèles ConvNets au cas de la vidéo, et (ii) Un modèle d'apprentissage non supervisé, qui se base sur un schéma d'auto-encodage, et sur une représentation parcimonieuse sur-complète des données. Outre les originalités liées à chacune de ces deux approches, une contribution supplémentaire de cette thèse est une étude comparative entre plusieurs modèles de classification de séquences parmi les plus populaires de l'état de l'art. Cette étude a été réalisée en se basant sur des caractéristiques manuelles adaptées à la problématique de la reconnaissance d'actions dans les vidéos de football. Ceci a permis d'identifier le modèle de classification le plus performant (un réseau de neurone récurrent bidirectionnel à longue mémoire à court-terme -BLSTM-), et de justifier son utilisation pour le reste des expérimentations. Enfin, afin de valider la généricité des deux modèles proposés, ceux-ci ont été évalués sur deux problématiques différentes, à savoir la reconnaissance d'actions humaines (sur la base KTH), et la reconnaissance d'expressions faciales (sur la base GEMEP-FERA). L'étude des résultats a permis de valider les approches, et de montrer qu'elles obtiennent des performances parmi les meilleures de l'état de l'art (avec 95,83% de bonne reconnaissance pour la base KTH, et 87,57% pour la base GEMEP-FERA).
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Dagnes, Nicole. "3D human face analysis for recognition applications and motion capture". Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2542.

Texto completo da fonte
Resumo:
Cette thèse se propose comme une étude géométrique de la surface faciale en 3D, dont le but est de fournir un ensemble d'entités, issues du contexte de la géométrie différentielle, à utiliser comme descripteurs faciaux dans les applications d'analyse du visage, comme la reconnaissance faciale et la reconnaissance des expressions faciales. En effet, bien que chaque visage soit unique, tous les visages sont similaires et leurs caractéristiques morphologiques sont les mêmes pour tous les individus. Par conséquent, il est primordial pour l'analyse des visages d'extraire les caractéristiques faciales les plus appropriées. Tous les traits du visage, proposés dans cette étude, sont basés uniquement sur les propriétés géométriques de la surface faciale. En effet, l'objectif final de cette recherche est de démontrer que la géométrie différentielle est un outil complet pour l'analyse des visages et que les caractéristiques géométriques conviennent pour décrire et comparer des visages et, en général, pour extraire des informations pertinentes pour l'analyse faciale dans les différents domaines d'application. Enfin, ce travail se concentre aussi sur l'analyse des troubles musculo-squelettiques en proposant une quantification objective des mouvements du visage pour aider la chirurgie maxillo-faciale et la rééducation des mouvements du visage. Ce travail de recherche explore le système de capture du mouvement 3D, en adoptant la plateforme Technologie, Sport et Santé, située au Centre d'Innovation de l'Université de Technologie de Compiègne, au sein du Laboratoire de Biomécanique et Bioingénierie (BMBI)
This thesis is intended as a geometrical study of the three-dimensional facial surface, whose aim is to provide an application framework of entities coming from Differential Geometry context to use as facial descriptors in face analysis applications, like FR and FER fields. Indeed, although every visage is unique, all faces are similar and their morphological features are the same for all mankind. Hence, it is primary for face analysis to extract suitable features. All the facial features, proposed in this study, are based only on the geometrical properties of the facial surface. Then, these geometrical descriptors and the related entities proposed have been applied in the description of facial surface in pattern recognition contexts. Indeed, the final goal of this research is to prove that Differential Geometry is a comprehensive tool oriented to face analysis and geometrical features are suitable to describe and compare faces and, generally, to extract relevant information for human face analysis in different practical application fields. Finally, since in the last decades face analysis has gained great attention also for clinical application, this work focuses on musculoskeletal disorders analysis by proposing an objective quantification of facial movements for helping maxillofacial surgery and facial motion rehabilitation. At this time, different methods are employed for evaluating facial muscles function. This research work investigates the 3D motion capture system, adopting the Technology, Sport and Health platform, located in the Innovation Centre of the University of Technology of Compiègne, in the Biomechanics and Bioengineering Laboratory (BMBI)
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Zhang, Wuming. "Towards non-conventional face recognition : shadow removal and heterogeneous scenario". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC030/document.

Texto completo da fonte
Resumo:
Ces dernières années, la biométrie a fait l’objet d’une grande attention en raison du besoin sans cesse croissant d’authentification d’identité, notamment pour sécuriser de plus en plus d’applications enlignes. Parmi divers traits biométriques, le visage offre des avantages compétitifs sur les autres, e.g., les empreintes digitales ou l’iris, car il est naturel, non-intrusif et facilement acceptable par les humains. Aujourd’hui, les techniques conventionnelles de reconnaissance faciale ont atteint une performance quasi-parfaite dans un environnement fortement contraint où la pose, l’éclairage, l’expression faciale et d’autres sources de variation sont sévèrement contrôlées. Cependant, ces approches sont souvent confinées aux domaines d’application limités parce que les environnements d’imagerie non-idéaux sont très fréquents dans les cas pratiques. Pour relever ces défis d’une manière adaptative, cette thèse porte sur le problème de reconnaissance faciale non contrôlée, dans lequel les images faciales présentent plus de variabilités sur les éclairages. Par ailleurs, une autre question essentielle vise à profiter des informations limitées de 3D pour collaborer avec les techniques basées sur 2D dans un système de reconnaissance faciale hétérogène. Pour traiter les diverses conditions d’éclairage, nous construisons explicitement un modèle de réflectance en caractérisant l’interaction entre la surface de la peau, les sources d’éclairage et le capteur de la caméra pour élaborer une explication de la couleur du visage. A partir de ce modèle basé sur la physique, une représentation robuste aux variations d’éclairage, à savoir Chromaticity Invariant Image (CII), est proposée pour la reconstruction des images faciales couleurs réalistes et sans ombre. De plus, ce processus de la suppression de l’ombre en niveaux de couleur peut être combiné avec les techniques existantes sur la normalisation d’éclairage en niveaux de gris pour améliorer davantage la performance de reconnaissance faciale. Les résultats expérimentaux sur les bases de données de test standard, CMU-PIE et FRGC Ver2.0, démontrent la capacité de généralisation et la robustesse de notre approche contre les variations d’éclairage. En outre, nous étudions l’usage efficace et créatif des données 3D pour la reconnaissance faciale hétérogène. Dans un tel scénario asymétrique, un enrôlement combiné est réalisé en 2D et 3D alors que les images de requête pour la reconnaissance sont toujours les images faciales en 2D. A cette fin, deux Réseaux de Neurones Convolutifs (Convolutional Neural Networks, CNN) sont construits. Le premier CNN est formé pour extraire les descripteurs discriminants d’images 2D/3D pour un appariement hétérogène. Le deuxième CNN combine une structure codeur-décodeur, à savoir U-Net, et Conditional Generative Adversarial Network (CGAN), pour reconstruire l’image faciale en profondeur à partir de son homologue dans l’espace 2D. Plus particulièrement, les images reconstruites en profondeur peuvent être également transmise au premier CNN pour la reconnaissance faciale en 3D, apportant un schéma de fusion qui est bénéfique pour la performance en reconnaissance. Notre approche a été évaluée sur la base de données 2D/3D de FRGC. Les expérimentations ont démontré que notre approche permet d’obtenir des résultats comparables à ceux de l’état de l’art et qu’une amélioration significative a pu être obtenue à l’aide du schéma de fusion
In recent years, biometrics have received substantial attention due to the evergrowing need for automatic individual authentication. Among various physiological biometric traits, face offers unmatched advantages over the others, such as fingerprints and iris, because it is natural, non-intrusive and easily understandable by humans. Nowadays conventional face recognition techniques have attained quasi-perfect performance in a highly constrained environment wherein poses, illuminations, expressions and other sources of variations are strictly controlled. However these approaches are always confined to restricted application fields because non-ideal imaging environments are frequently encountered in practical cases. To adaptively address these challenges, this dissertation focuses on this unconstrained face recognition problem, where face images exhibit more variability in illumination. Moreover, another major question is how to leverage limited 3D shape information to jointly work with 2D based techniques in a heterogeneous face recognition system. To deal with the problem of varying illuminations, we explicitly build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color. With this physics-based image formation model involved, an illumination-robust representation, namely Chromaticity Invariant Image (CII), is proposed which can subsequently help reconstruct shadow-free and photo-realistic color face images. Due to the fact that this shadow removal process is achieved in color space, this approach could thus be combined with existing gray-scale level lighting normalization techniques to further improve face recognition performance. The experimental results on two benchmark databases, CMU-PIE and FRGC Ver2.0, demonstrate the generalization ability and robustness of our approach to lighting variations. We further explore the effective and creative use of 3D data in heterogeneous face recognition. In such a scenario, 3D face is merely available in the gallery set and not in the probe set, which one would encounter in real-world applications. Two Convolutional Neural Networks (CNN) are constructed for this purpose. The first CNN is trained to extract discriminative features of 2D/3D face images for direct heterogeneous comparison, while the second CNN combines an encoder-decoder structure, namely U-Net, and Conditional Generative Adversarial Network (CGAN) to reconstruct depth face image from its counterpart in 2D. Specifically, the recovered depth face images can be fed to the first CNN as well for 3D face recognition, leading to a fusion scheme which achieves gains in recognition performance. We have evaluated our approach extensively on the challenging FRGC 2D/3D benchmark database. The proposed method compares favorably to the state-of-the-art and show significant improvement with the fusion scheme
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Ji, Yi. "Object classification in images and videos : Application to facial expressions". Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0107/these.pdf.

Texto completo da fonte
Resumo:
In this dissertation, we address the problem of generative object categorization in computer vision. Then, we apply to the classification of facial expressions. For the first part, we are inspired by the method Hierarchical Dirichlet Processes to generate intermediate mixture components to improve recognition and categorization, as it shares with documents modelling topic two similar aspects: its nonparametric and its hierarchical nature. After we obtain the set of components, instead of boosting the features as Viola and Jones, we try to boost the components in the intermediate layer to find the most distinctive ones. We consider that these components are more important for object class recognition than others and use them to improve the classification. Our target is to understand the correct classification of objects, and also to discover the essential latent themes sharing across multiple categories of object and the particular distribution of the latent themes for a special category. In the second part, regarding the relation between basic expressions and corresponding facial deformation models, we propose two new textons, VTB and moments on spatiotemporal plane, to describe the transformation of human face during facial expressions. These descriptors aim to catch both general shape changes and motion texture details. The dynamic deformation of facial components is so captured by modelling the temporal behaviour of facial expression. Finally, SVM based system is used to efficiently recognize the expression for a single image in sequence, then, the weighted probabilities of all the frames are used to predict the class of the current sequence. My thesis includes finding the proper methods to describe the static and dynamic aspects during facial expression. I also aim to design new descriptors to denote characteristics of facial muscle movements, and furthermore, identify the category of emotion
Dans cette thèse, nous avons abordé la problématique de la classification d'objets puis nous l'avons appliqué à la classification et la reconnaissance des expressions faciales. D'abord, nous nous sommes inspirés des processus de Dirichlet, comme des distributions dans l'espace des distributions, qui génèrent des composantes intermédiaires permettant d'améliorer la catégorisation d'objets. Ce modèle, utilisé notamment dans la classification sémantique de documents, se caractérise par le fait d'être non paramétrique, et d'être hiérarchique. Dans une première phase, l'ensemble des composantes intermédiaires de base sont extraites en utilisant l'apprentissage bayésien par MCMC puis une sélection itérative des classifiers faibles les plus distinctifs parmi toutes les composantes est opéré par Adaboost. Notre objectif est de cerner les distributions des composantes latentes aussi bien celles partagées par les différentes classes que celles associées à une catégorie particulière. Nous avons cherché dans cette seconde partie à appliquer notre approche de classification aux expressions faciales. Ce travail a consisté à trouver les méthodes adéquates pour décrire les aspects statiques et dynamiques au cours de l'expression faciale, et donc à concevoir de nouveaux descripteurs capables de représenter les caractéristiques des mouvements des muscles faciaux, et par là même, identifier la catégorie de l'expression
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Li, Huibin. "Towards three-dimensional face recognition in the real". Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00998798.

Texto completo da fonte
Resumo:
Due to the natural, non-intrusive, easily collectible, widespread applicability, machine-based face recognition has received significant attention from the biometrics community over the past three decades. Compared with traditional appearance-based (2D) face recognition, shape-based (3D) face recognition is more stable to illumination variations, small head pose changes, and varying facial cosmetics. However, 3D face scans captured in unconstrained conditions may lead to various difficulties, such as non-rigid deformations caused by varying expressions, data missing due to self occlusions and external occlusions, as well as low-quality data as a result of some imperfections in the scanning technology. In order to deal with those difficulties and to be useful in real-world applications, in this thesis, we propose two 3D face recognition approaches: one is focusing on handling various expression changes, while the other one can recognize people in the presence of large facial expressions, occlusions and large pose various. In addition, we provide a provable and practical surface meshing algorithm for data-quality improvement. To deal with expression issue, we assume that different local facial region (e.g. nose, eyes) has different intra-expression/inter-expression shape variability, and thus has different importance. Based on this assumption, we design a learning strategy to find out the quantification importance of local facial regions in terms of their discriminating power. For facial description, we propose a novel shape descriptor by encoding the micro-structure of multi-channel facial normal information in multiple scales, namely, Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP). It can comprehensively describe the local shape changes of 3D facial surfaces by a set of LNP histograms including both global and local cues. For face matching, Weighted Sparse Representation-based Classifier (W-SRC) is formulated based on the learned quantification importance and the LNP histograms. The proposed approach is evaluated on four databases: the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC, including face scans in the presence of diverse expressions and action units, or several prototypical expressions with different intensities, or facial expression variations combine with strong facial similarities (i.e. identical twins). Extensive experimental results show that the proposed 3D face recognition approach with the use of discriminative facial descriptors can be able to deal with expression variations and perform quite accurately over all databases, and thereby has a good generalization ability. To deal with expression and data missing issues in an uniform framework, we propose a mesh-based registration free 3D face recognition approach based on a novel local facial shape descriptor and a multi-task sparse representation-based face matching process. [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Mainsant, Marion. "Apprentissage continu sous divers scénarios d'arrivée de données : vers des applications robustes et éthiques de l'apprentissage profond". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALS045.

Texto completo da fonte
Resumo:
Le cerveau humain reçoit en continu des informations en provenance de stimuli externes. Il a alors la capacité de s’adapter à de nouvelles connaissances tout en conservant une mémoire précise de la connaissance apprise par le passé. De plus en plus d’algorithmes d’intelligence artificielle visent à apprendre des connaissances à la manière d’un être humain. Ils doivent alors être mis à jour sur des données variées arrivant séquentiellement et disponibles sur un temps limité. Cependant, un des verrous majeurs de l’apprentissage profond réside dans le fait que lors de l’apprentissage de nouvelles connaissances, les anciennes sont quant-à-elles perdues définitivement, c’est ce que l’on appelle « l’oubli catastrophique ». De nombreuses méthodes ont été proposées pour répondre à cette problématique, mais celles-ci ne sont pas toujours applicables à une mise en situation réelle car elles sont construites pour obtenir les meilleures performances possibles sur un seul scénario d’arrivée de données à la fois. Par ailleurs, les meilleures méthodes existant dans l’état de l’art sont la plupart du temps ce que l’on appelle des méthodes à « rejeu de données » qui vont donc conserver une petite mémoire du passé, posant ainsi un problème dans la gestion de la confidentialité des données ainsi que dans la gestion de la taille mémoire disponible.Dans cette thèse, nous proposons d’explorer divers scénarios d’arrivée de données existants dans la littérature avec, pour objectif final, l’application à la reconnaissance faciale d’émotion qui est essentielle pour les interactions humain-machine. Pour cela nous présenterons l’algorithme Dream Net – Data-Free qui est capable de s’adapter à un vaste nombre de scenarii d’arrivée des données sans stocker aucune donnée passée. Cela lui permet donc de préserver la confidentialité des données apprises. Après avoir montré la robustesse de cet algorithme comparé aux méthodes existantes de l’état de l’art sur des bases de données classiques de la vision par ordinateur (Mnist, Cifar-10, Cifar-100 et Imagenet-100), nous verrons qu’il fonctionne également sur des bases de données de reconnaissance faciale d’émotions. En s’appuyant sur ces résultats, nous proposons alors un démonstrateur embarquant l’algorithme sur une carte Nvidia Jetson nano. Enfin nous discuterons la pertinence de notre approche pour la réduction des biais en intelligence artificielle ouvrant ainsi des perspectives vers une IA plus robuste et éthique
The human brain continuously receives information from external stimuli. It then has the ability to adapt to new knowledge while retaining past events. Nowadays, more and more artificial intelligence algorithms aim to learn knowledge in the same way as a human being. They therefore have to be able to adapt to a large variety of data arriving sequentially and available over a limited period of time. However, when a deep learning algorithm learns new data, the knowledge contained in the neural network overlaps old one and the majority of the past information is lost, a phenomenon referred in the literature as catastrophic forgetting. Numerous methods have been proposed to overcome this issue, but as they were focused on providing the best performance, studies have moved away from real-life applications where algorithms need to adapt to changing environments and perform, no matter the type of data arrival. In addition, most of the best state of the art methods are replay methods which retain a small memory of the past and consequently do not preserve data privacy.In this thesis, we propose to explore data arrival scenarios existing in the literature, with the aim of applying them to facial emotion recognition, which is essential for human-robot interactions. To this end, we present Dream Net - Data-Free, a privacy preserving algorithm, able to adapt to a large number of data arrival scenarios without storing any past samples. After demonstrating the robustness of this algorithm compared to existing state-of-the-art methods on standard computer vision databases (Mnist, Cifar-10, Cifar-100 and Imagenet-100), we show that it can also adapt to more complex facial emotion recognition databases. We then propose to embed the algorithm on a Nvidia Jetson nano card creating a demonstrator able to learn and predict emotions in real-time. Finally, we discuss the relevance of our approach for bias mitigation in artificial intelligence, opening up perspectives towards a more ethical AI
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dubuisson, Séverine. "Analyses d'expressions faciales". Compiègne, 2001. http://www.theses.fr/2001COMP1360.

Texto completo da fonte
Resumo:
L'objectif de la thèse est l'étude des méthodes de représentation et de reconnaissance d'expressions faciales. Le visage étant la partie la plus expressive d'un être humain, il est l'un des centres d'intérêt majeurs dans les recherches pour l'amélio¬ration de l'interaction homme/machine, Pour analyser une expression, il faut tout d'abord extraire d'un visage les attributs caractérisant l'expression. Il est ensuite nécessaire de leur choisir une représentation appropriée afin de faciliter le problème final de reconnaissance, qui se fait par le biais d'outils de mesure. Nous donnons deux états de l'art concernant l'extraction de caractéristiques et la reconnaissance d'expressions faciales, avant de proposer nos contributions personnelles. Nous proposons un algorithme de détection des traits caractéristiques per-mettant d'extraire la partie intérieure de visages supposés vus de face. Le principe est de révéler des zones caractéristiques du visage en utilisant un filtrage de Gabor. Nous déterminons ensuite lesquelles d'entre elles correspondent aux yeux et à la bouche en classant les noeuds générés par un partitionnement adaptatif de l'image du module de Gabor. La méthode testée sur de nombreux exemples s'est montrée robuste. Nous présentons ensuite une méthode de reconnaissance d'expressions basée sur une optimisation de la représentation, par analyse statistique, de masques faciaux expressifs. Nous calculons une Analyse en Composantes Principales sur un ensemble d'apprentissage composé d'individus issus de différentes classes d'expression. L'idée est de trier les composantes principales générées dans leur ordre décroissant d'importance pour le problème de reconnaissance d'expressions. Pour cela, nous utilisons une procédure itérative qui sélectionne pas à pas les composantes et dont le critère de sélection est celui de l'erreur commise par le discriminateur. Le sous-espace propre "optimisé" est construit avec les vecteurs propres associés aux composantes triées et nous y projetons les individus. Nous effectuons ensuite une Analyse Discriminante Linéaire, fournissant un sous-espace discriminant dans lequel s'opère la reconnaissance d'expressions. Les tests effectués et les résultats fournis montrent l'intérêt du choix d'une représentation optimale pour la reconnaissance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ben, Amor Boulbaba. "Contributions à la modélisation et à la reconnaissance faciales 3D". Ecully, Ecole centrale de Lyon, 2006. http://bibli.ec-lyon.fr/exl-doc/bbenamor.pdf.

Texto completo da fonte
Resumo:
La reconnaissance automatique de visages est un domaine de recherche pour lequel un effort important a été consenti au cours des trois dernières décennies. Le present travail de thèse s'inscrit dans le cadre de l'un des thèmes d'actualité de ce domaine à savoir la reconnaissance faciale en 3D. Dans ce travail, nous nous sommes intéressés aux deux aspects complémentaires de ce sujet qui sont : la modélisation et la reconnaissance faciales tridimensionnelle. Alors que la modelisation a pour objectif l'acquisition de la forme 3D du visage, la reconnaissance vise l'identification d'un visage requête parmi des visages stockés dans une base de données ou bien la verification de son identité. Pour cela, deux approches été étudiées et mises en place : (i) une approche hybride d'acquisition faciale basée sur la stéréovision active et la modélisation géométrique, et (ii) une approche de recalage de surfaces faciales afin de mesurer les similarites entre les modèles 3D de visages. Une nouvelle base de donée incluant des acquisitions 3D, a été collectée dans le cadre du projet Technovision IV 2 afin d'effectuer des évaluations significatives sur les algorithmes developpés
Nowadays, face recognition represent one of the privileged fields of search due to the emergence of the security in many domains. This thesis lies within this scope, and more particularly, in the three-dimensional face recognition. In this work, we are interested to the complementary fields : 3D face modelling and recognition. Whereas modelling task aims at 3D face shape acquisition, recognition task aims at the identification of a probe face model among faces stored in a data base (gallery) or verify his identity. For that, two approaches are studied and implemented : (i) an hybrid approach for facial acquisition based on active vision and geometrical modelling, and (ii) an approach for aligning facial surfaces before computing similarities between 3D models. A new 3D face database is collected within the IV 2 French project in order to make signifiant experiments and evaluations of the developed algorithms
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Allaert, Benjamin. "Analyse des expressions faciales dans un flux vidéo". Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I021/document.

Texto completo da fonte
Resumo:
De nos jours, dans des domaines tels que la sécurité et la santé, une forte demande consiste à pouvoir analyser le comportement des personnes en s'appuyant notamment sur l'analyse faciale. Dans cette thèse, nous explorons de nouvelles approches à destination de systèmes d’acquisition peu contraints. Plus spécifiquement, nous nous intéressons à l'analyse des expressions faciales en présence de variation d'intensité et de variations de pose du visage. Notre première contribution s'intéresse à la caractérisation précise des variations d'intensité des expressions faciales. Nous proposons un descripteur innovant appelé LMP qui s'appuie sur les propriétés physiques déformables du visage afin de conserver uniquement les directions principales du mouvement facial induit par les expressions. La particularité principale de notre travail est de pouvoir caractériser à la fois les micro et les macro expressions, en utilisant le même système d'analyse. Notre deuxième contribution concerne la prise en compte des variations de pose. Souvent, une étape de normalisation est employée afin d'obtenir une invariance aux transformations géométriques. Cependant, ces méthodes sont utilisées sans connaître leur impact sur les expressions faciales. Pour cela, nous proposons un système d'acquisition innovant appelé SNaP-2DFe. Ce système permet de capturer simultanément un visage dans un plan fixe et dans un plan mobile. Grâce à cela, nous fournissons une connaissance du visage à reconstruire malgré les occultations induites par les rotations de la tête. Nous montrons que les récentes méthodes de normalisation ne sont pas parfaitement adaptées pour l'analyse des expressions faciales
Facial expression recognition has attracted great interest over the past decade in wide application areas, such as human behavior analysis, e-health and marketing. In this thesis we explore a new approach to step forward towards in-the-wild expression recognition. Special attention has been paid to encode respectively small/large facial expression amplitudes, and to analyze facial expressions in presence of varying head pose. The first challenge addressed concerns varying facial expression amplitudes. We propose an innovative motion descriptor called LMP. This descriptor takes into account mechanical facial skin deformation properties. When extracting motion information from the face, the unified approach deals with inconsistencies and noise, caused by face characteristics. The main originality of our approach is a unified approach for both micro and macro expression recognition, with the same facial recognition framework. The second challenge addressed concerns important head pose variations. In facial expression analysis, the face registration step must ensure that minimal deformation appears. Registration techniques must be used with care in presence of unconstrained head pose as facial texture transformations apply. Hence, it is valuable to estimate the impact of alignment-related induced noise on the global recognition performance. For this, we propose a new database, called SNaP-2DFe, allowing to study the impact of head pose and intra-facial occlusions on expression recognition approaches. We prove that the usage of face registration approach does not seem adequate for preserving the features encoding facial expression deformations
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Matta, Federico. "Video person recognition strategies using head motion and facial appearance". Nice, 2008. http://www.theses.fr/2008NICE4038.

Texto completo da fonte
Resumo:
In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semi-automatically detecting the face, and then automatically tracking the facial landmarks over time using a template matching strategy. Then, we describe the geometrical normalisations of the extracted signals, the calculation of the feature vectors, and how these are successively used to estimate the client models through a Gaussian mixture model (GMM) approximation. In the end, we achieve person identification and verification by applying the probability theory and the Bayesian decision rule (also called Bayesian inference). Afterwards, we propose a multimodal extension of our person recognition system; more precisely, we successfully integrate the head motion information with mouth motion and facial appearance, by taking advantage of a unified probabilistic framework. In fact, we develop a new temporal subsystem that has an extended feature space enriched by some additional mouth parameters; at the same time, we introduce a complementary spatial subsystem based on a probabilistic extension of the original eigenface approach. In the end, we implement an integration step to combine the similarity scores of the two parallel subsystems, using a suitable opinion fusion (or score fusion) strategy. Finally, we investigate a practical method for extracting novel spatio-temporal facial features from video sequences, which are used to discriminate identity and gender. For this purpose we develop a recognition system called tomofaces, which applies the temporal X-ray transformation of a video sequence to summarise the facial motion and appearance information of a person into a single X-ray image. Then, we detail the linear projection from the X-ray image space to a low dimensional feature space, the estimation of the client models obtained by computing their cluster representatives, and the recognition of identity and gender through a nearest neighbour classifier using distances
Dans cette thèse, nous avons principalement exploré l'utilisation de l'information temporelle des séquences vidéo afin de l'appliquer à la reconnaissance de personne et de son genre; en particulier, nous nous concentrons sur l'analyse du mouvement de la tête et du visage ainsi que sur leurs applications potentielles comme éléments d'identification biométriques. De plus, nous cherchons à exploiter la majorité de l'information contenue dans la vidéo pour la reconnaissance automatique; plus précisément, nous regardons la possibilité d'intégrer dans un système biométrique multimodal l'information liée au mouvement de la tête et de la bouche avec celle de l'aspect du visage, et nous étudions l'extraction des nouveaux paramètres spatio-temporels pour la reconnaissance faciale. Nous présentons d'abord un système de reconnaissance de la personne qui exploite l'information relative au mouvement spontané de la tête. Cette information est extraite par le suivi dans le plan image de certains éléments caractéristiques du visage. En particulier, nous détaillons la façon dont dans chaque séquence vidéo le visage est tout d'abord détecté semi-automatiquement, puis le suivi automatique dans le temps de certains éléments caractéristiques en utilisant une approche basée sur l'appariement de bloques (template matching). Ensuite, nous exposons les normalisations géométriques des signaux que nous avons obtenus, le calcul des vecteurs caractéristiques, et la façon dont ils sont utilisés pour estimer les modèles des clients, approximés avec des modèles de mélange de gaussiennes. En fin de compte, nous parvenons à identifier et vérifier l'identité de la personne en appliquant la théorie des probabilités et la règle de décision bayésienne (aussi appelée inférence bayésienne). Nous proposons ensuite une extension multimodale de notre système de reconnaissance de la personne; plus précisément, nous intégrons à travers un cadre probabiliste unifié l'information sur le mouvement de la tête avec celles liées au mouvement de la bouche et à l'aspect du visage. En fait nous développons un nouveau sous-système temporel qui a un espace caractéristique étendu, lequel est enrichi par certains paramètres supplémentaires relatif au mouvement de la bouche; dans le même temps nous introduisons un sous-système spatial complémentaire au précédent, basé sur une extension probabiliste de l'approche Eigenfaces d'origine. Ensuite, une étape d'intégration combine les scores de similarité des deux sous-systèmes parallèles, grâce à une stratégie appropriée de fusion d'opinions. Enfin nous étudions une méthode pratique pour extraire de nouveaux paramètres spatio-temporels liés au visage à partir des séquences vidéo; le but est de distinguer l'identité et le genre de la personne. À cette fin nous développons un système de reconnaissance appelé tomovisages (tomofaces), qui applique la technique de la tomographie vidéo pour résumer en une seule image l'information relative au mouvement et à l'aspect du visage d'une personne. Puis, nous détaillons la projection linéaire à partir de l'espace de l'image en rayons X à un espace caractéristique de dimension réduite, l'estimation des modèles des utilisateurs en calculant les représentants des clusters correspondants, et la reconnaissance de l'identité et du genre par le biais d'un classificateur de plus proche voisin, qui adopte des distances dans le sous-espace
In questa tesi di dottorato esploriamo la possibilità di riconoscere l'identità e il sesso di una persona attraverso l'utilizzo dell'informazione temporale disponibile in alcune sequenze video, in particolare ci concentriamo sull'analisi del movimento della testa e del viso, nonché del loro potenziale utilizzo come identificatiori biometrici. Esaminiamo inoltre la problematica relativa al fatto di sfruttare la maggior parte dell'informazione presente nei video per effettuare il riconoscimento automatico della persona; più precisamente, analizziamo la possibilità di integrare in un sistema biometrico multimodale l'informazione relativa al movimento della testa e della bocca con quella dell'aspetto del viso, e studiamo il calcolo di nuovi parametri spazio-temporali che siano utilizzabili per il riconoscimento stesso. In primo luogo presentiamo un sistema di riconoscimento biometrico della persona che sfrutti l'informazione legata al movimento naturale della testa, il quale è estratto seguendo la posizione nel piano immagine di alcuni elementi caratteristici del viso. In particolare descriviamo come in una sequenza video il volto venga dapprima individuato semiautomaticamente, e come poi alcuni suoi elementi caratteristici siano localizzati nel tempo tramite un algoritmo automatico di messa in corrispondenza di modelli (template matching) permettendo di seguirne la posizione. Spieghiamo quindi le normalizzazioni geometriche dei segnali che abbiamo ricavato, il calcolo dei vettori caratteristici, ed il modo in cui questi sono utilizzati per stimare i modelli degli utilizzatori, approssimandoli tramite delle misture di distribuzioni gaussiane (Gaussian mixture models). Alla fine otteniamo l'identificazione e la verifica dell'identità della persona applicando la teoria delle probabilità e la regola di decisione o inferenza bayesiana. In seguito proponiamo un'estensione multimodale del nostro sistema di riconoscimento della persona; più precisamente, tramite un approccio probabilistico unificato, integriamo l'informazione sul movimento della testa con quelle relative al movimento della bocca e all'aspetto del viso. Infatti sviluppiamo un nuovo sottosistema temporale che possiede uno spazio caratteristico esteso, arricchito di alcuni parametri aggiuntivi legati al movimento della bocca; contemporaneamente, introduciamo un sottosistema spaziale complementare al precedente, basato su un'estensione probabilistica dell'approccio Eigenfaces originale. Alla fine implementiamo uno stadio di fusione, che metta insieme i valori di somiglianza dei due sottosistemi paralleli, attraverso un'appropriata strategia di fusione delle opinioni. Infine investighiamo un metodo pratico per estrarre nuovi parametri spazio-temporali relativi al volto a partire da sequenze video, i quali sono utilizzati per distinguere l'identità ed il sesso della persona. A questo riguardo sviluppiamo un sistema di riconoscimento chiamato tomovolti (tomofaces), il quale utilizza la tecnica della tomografia video per riassumere in una sola immagine l'informazione relativa all'aspetto ed al movimento del volto di una persona. Poi descriviamo la proiezione lineare dallo spazio dell'immagine ai raggi X ad un spazio caratteristico di dimensione ridotta, la stima dei modelli degli utilizzatori attraverso il calcolo dei rappresentanti corrispondenti ad ogni cluster, ed il riconoscimento dell'identità e del genere attraverso un classificatore al vicino più prossimo (nearest neighbour classifier), che adopera le distanze nel sottospazio
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Samir, Chafik. "Analyse des déformations des visages 3D utilisant les chemins géodésiques dans l'espace des surfaces faciales". Evry, Institut national des télécommunications, 2006. http://www.theses.fr/2007TELE0016.

Texto completo da fonte
Resumo:
L'analyse de la forme des surfaces faciales a un intérêt de plus en plus croissant et trouve ses applications dans différents domaines tels que la chirurgie faciale, les communications vidéos, l'animation 3D, les interfaces homme-machine et la biométrie. Nous proposons dans cette thèse une nouvelle approche issue de la géométrie Riemannienne. Elle basée sur la représentation des surfaces faciales par une famille de lignes de niveau dites courbes faciales (2D ou 3D). Dans la première partie de la thèse, nous proposons de comparer deux surfaces faciales à travers les formes planes des courbes faciales. En utilisant la géométrie Riemannienne de l’espace des courbes 2D, nous définissons la notion de chemin géodésique et la distance entre deux surfaces faciales. Les résultats expérimentaux sur la base publique (FRGC V1. 0) démontrent l'efficacité de notre approche pour la reconnaissance de visages 3D. En effet, la courbe ROC montre que l’on peut atteindre un taux de reconnaissance de 97% si on accepte un taux de faux positif de 1%. Dans la deuxième partie de la thèse nous avons défini l’espace des surfaces faciales comme une variété non-linéaire de dimension infinie. Dans cet espace les déformations sont modélisées par des chemins entre deux surfaces faciales. Nous avons, tout d’abord, analysé les surfaces faciales comme étant des points de cette variété. Ensuite, nous avons déterminé les déformations optimales entre deux points de cet espace, comme étant le chemin géodésique qui les relie. La longueur de ce chemin géodésique est une distance "naturelle" entre les surfaces faciales. Enfin, nous avons défini des notions statistiques telles que la variance et la moyenne de Karcher. Les résultats expérimentaux montrent tout l'intérêt de notre approche
[non communiqué]
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Dantcheva, Antitza. "Biométries faciales douces : méthodes, applications et défis". Phd thesis, Paris, Télécom ParisTech, 2011. https://pastel.hal.science/pastel-00673146.

Texto completo da fonte
Resumo:
Cette thèse s’intéresse aux biométries dites douces, et notamment à leurs utilisations en termes de sécurité, dans le cadre de différents scénarii commerciaux, incluant des aspects usage. L'accent sera ainsi porté sur les caractéristiques faciales qui constituent un jeu de traits significatifs de l’apparence physique mais aussi comportementale de l’utilisateur permettant de différencier, classer et identifier les individus. Ces traits, qui sont l'âge, le sexe, les cheveux, la peau et la couleur des yeux, mais aussi la présence de lunettes, de moustache ou de barbe, comportent plusieurs avantages notamment la facilité avec laquelle ils peuvent être acquis, mais également du fait qu’ils correspondent à la façon dont les êtres humains perçoivent leurs environnements. Plus précisément, les traits issus de la biométrie douce sont compatibles avec la manière dont l’humain tend à catégoriser son entourage, une démarche impliquant une structuration hiérarchique des différents traits. Cette thèse explore ces différents traits et leurs applications dans les systèmes de biométries douces (SBS), et met l’accent sur la manière dont de tels systèmes peuvent atteindre des buts différents, y compris la recherche accélérée dans des bases de données, l'identification et la ré-identification d’individus, mais également la prédiction et la quantification de l'esthétique d’un visage. Ce travail est motivé notamment par l'importance croissante de ces applications dans notre société en constante évolution, mais aussi par le côté peu contraignant du système. En effet, les SBS sont généralement nonintrusifs, et nécessitent le plus souvent de faibles temps de calculs
This dissertation studies soft biometrics traits, their applicability in different security and commercial scenarios, as well as related usability aspects. We place the emphasis on human facial soft biometric traits which constitute the set of physical, adhered or behavioral human characteristics that can partially differentiate, classify and identify humans. Such traits, which include characteristics like age, gender, skin and eye color, the presence of glasses, moustache or beard, inherit several advantages such as ease of acquisition, as well as a natural compatibility with how humans perceive their surroundings. Specifically, soft biometric traits are compatible with the human process of classifying and recalling our environment, a process which involves constructions of hierarchical structures of different refined traits. This thesis explores these traits, and their application in soft biometric systems (SBSs), and specifically focuses on how such systems can achieve different goals including database search pruning, human identification, human re–identification and, on a different note, prediction and quantification of facial aesthetics. Our motivation originates from the emerging importance of such applications in our evolving society, as well as from the practicality of such systems. SBSs generally benefit from the non-intrusive nature of acquiring soft biometric traits, and enjoy computational efficiency which in turn allows for fast, enrolment–free and pose–flexible biometric analysis, even in the absence of consent and cooperation by the involved human subjects
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Dantcheva, Antitza. "Biométries faciales douces : méthodes, applications et défis". Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00673146.

Texto completo da fonte
Resumo:
Cette thèse s'intéresse aux biométries dites douces, et notamment à leurs utilisations en termes de sécurité, dans le cadre de différents scénarii commerciaux, incluant des aspects usage. L'accent sera ainsi porté sur les caractéristiques faciales qui constituent un jeu de traits significatifs de l'apparence physique mais aussi comportementale de l'utilisateur permettant de différencier, classer et identifier les individus. Ces traits, qui sont l'âge, le sexe, les cheveux, la peau et la couleur des yeux, mais aussi la présence de lunettes, de moustache ou de barbe, comportent plusieurs avantages notamment la facilité avec laquelle ils peuvent être acquis, mais également du fait qu'ils correspondent à la façon dont les êtres humains perçoivent leurs environnements. Plus précisément, les traits issus de la biométrie douce sont compatibles avec la manière dont l'humain tend à catégoriser son entourage, une démarche impliquant une structuration hiérarchique des différents traits. Cette thèse explore ces différents traits et leurs applications dans les systèmes de biométries douces (SBS), et met l'accent sur la manière dont de tels systèmes peuvent atteindre des buts différents, y compris la recherche accélérée dans des bases de données, l'identification et la ré-identification d'individus, mais également la prédiction et la quantification de l'esthétique d'un visage. Ce travail est motivé notamment par l'importance croissante de ces applications dans notre société en constante évolution, mais aussi par le côté peu contraignant du système. En effet, les SBS sont généralement non-intrusifs, et nécessitent le plus souvent de faibles temps de calculs, permettant ainsi une analyse biométrique rapide, sans imposer obligatoirement l'accord et la coopération de l'individu. Ces atouts rendent la biométrie douce indispensable dans les applications qui ont besoin de traitement d'images ou de vidéos en temps réel.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Maalej, Ahmed. "3D Facial Expressions Recognition Using Shape Analysis and Machine Learning". Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10025/document.

Texto completo da fonte
Resumo:
La reconnaissance des expressions faciales est une tâche difficile, qui a reçu un intérêt croissant au sein de la communauté des chercheurs, et qui impacte les applications dans des domaines liés à l'interaction homme-machine (IHM). Dans le but de construire des systèmes IHM approchant le comportement humain et émotionnellement intelligents, les scientifiques essaient d'introduire la composante émotionnelle dans ce type de systèmes. Le développement récent des capteurs d'acquisition 3D a fait que les données 3D deviennent de plus en plus disponibles, et ce type de données vient pour remédier à des problèmes inhérents aux données 2D tels que les variations d'éclairage, de pose et d'échelle et de faible résolution. Plusieurs bases de données 3D du visage sont publiquement disponibles pour les chercheurs dans le domaine de la reconnaissance d'expression faciale leur permettant ainsi de valider et d'évaluer leurs approches. Cette thèse traite le problème la reconnaissance d'expression faciale et propose une approche basée sur l'analyse de forme pour la reconnaissance d'expression dans un cadre statique (relatif à une seule image) et dynamique (relatif à une séquence vidéo). Tout d'abord, une représentation du modèle 3D du visage basée sur les courbes est proposée pour décrire les traits du visage. Puis, une fois ces courbes sont extraites, l'information de forme qui leur est liée est quantifiée en utilisant un cadre de travail basé sur la géométrie Riemannienne. Nous obtenons, par la suite, des scores de similarité entre les différentes formes locales du visage. Nous constituons, alors, un vecteur de caractéristiques associées à chaque surface faciale. Ensuite, ces caractéristiques sont utilisées comme paramètres d'entrée à des algorithmes d'apprentissage automatique et de classification pour la reconnaissance d'expressions. Des expérimentations exhaustives sont alors entreprises pour valider notre approche et des résultats sont présentés et comparés aux résultats des travaux de l'état de l'art
Facial expression recognition is a challenging task, which has received growing interest within the research community, impacting important applications in fields related to human machine interaction (HMI). Toward building human-like emotionally intelligent HMI devices, scientists are trying to include the essence of human emotional state in such systems. The recent development of 3D acquisition sensors has made 3D data more available, and this kind of data comes to alleviate the problems inherent in 2D data such as illumination, pose and scale variations as well as low resolution. Several 3D facial databases are publicly available for the researchers in the field of face and facial expression recognition to validate and evaluate their approaches. This thesis deals with facial expression recognition (FER) problem and proposes an approach based on shape analysis to handle both static and dynamic FER tasks. Our approach includes the following steps: first, a curve-based representation of the 3D face model is proposed to describe facial features. Then, once these curves are extracted, their shape information is quantified using a Riemannain framework. We end up with similarity scores between different facial local shapes constituting feature vectors associated with each facial surface. Afterwards, these features are used as entry parameters to some machine learning and classification algorithms to recognize expressions. Exhaustive experiments are derived to validate our approach and results are presented and compared to the related work achievements
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Dahmani, Sara. "Synthèse audiovisuelle de la parole expressive : modélisation des émotions par apprentissage profond". Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0137.

Texto completo da fonte
Resumo:
Les travaux de cette thèse portent sur la modélisation des émotions pour la synthèse audiovisuelle expressive de la parole à partir du texte. Aujourd’hui, les résultats des systèmes de synthèse de la parole à partir du texte sont de bonne qualité, toutefois la synthèse audiovisuelle reste encore une problématique ouverte et la synthèse expressive l’est encore d’avantage. Nous proposons dans le cadre de cette thèse une méthode de modélisation des émotions malléable et flexible, permettant de mélanger les émotions comme on mélange les teintes sur une palette de couleurs. Dans une première partie, nous présentons et étudions deux corpus expressifs que nous avons construits. La stratégie d’acquisition ainsi que le contenu expressif de ces corpus sont analysés pour valider leur utilisation à des fins de synthèse audiovisuelle de la parole. Dans une seconde partie, nous proposons deux architectures neuronales pour la synthèse de la parole. Nous avons utilisé ces deux architectures pour modéliser trois aspects de la parole : 1) les durées des sons, 2) la modalité acoustique et 3) la modalité visuelle. Dans un premier temps, nous avons adopté une architecture entièrement connectée. Cette dernière nous a permis d’étudier le comportement des réseaux de neurones face à différents descripteurs contextuels et linguistiques. Nous avons aussi pu analyser, via des mesures objectives, la capacité du réseau à modéliser les émotions. La deuxième architecture neuronale proposée est celle d’un auto-encodeur variationnel. Cette architecture est capable d’apprendre une représentation latente des émotions sans utiliser les étiquettes des émotions. Après analyse de l’espace latent des émotions, nous avons proposé une procédure de structuration de ce dernier pour pouvoir passer d’une représentation par catégorie vers une représentation continue des émotions. Nous avons pu valider, via des expériences perceptives, la capacité de notre système à générer des émotions, des nuances d’émotions et des mélanges d’émotions, et cela pour la synthèse audiovisuelle expressive de la parole à partir du texte
: The work of this thesis concerns the modeling of emotions for expressive audiovisual textto-speech synthesis. Today, the results of text-to-speech synthesis systems are of good quality, however audiovisual synthesis remains an open issue and expressive synthesis is even less studied. As part of this thesis, we present an emotions modeling method which is malleable and flexible, and allows us to mix emotions as we mix shades on a palette of colors. In the first part, we present and study two expressive corpora that we have built. The recording strategy and the expressive content of these corpora are analyzed to validate their use for the purpose of audiovisual speech synthesis. In the second part, we present two neural architectures for speech synthesis. We used these two architectures to model three aspects of speech : 1) the duration of sounds, 2) the acoustic modality and 3) the visual modality. First, we use a fully connected architecture. This architecture allowed us to study the behavior of neural networks when dealing with different contextual and linguistic descriptors. We were also able to analyze, with objective measures, the network’s ability to model emotions. The second neural architecture proposed is a variational auto-encoder. This architecture is able to learn a latent representation of emotions without using emotion labels. After analyzing the latent space of emotions, we presented a procedure for structuring it in order to move from a discrete representation of emotions to a continuous one. We were able to validate, through perceptual experiments, the ability of our system to generate emotions, nuances of emotions and mixtures of emotions, and this for expressive audiovisual text-to-speech synthesis
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Soladié, Catherine. "Représentation Invariante des Expressions Faciales". Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00935973.

Texto completo da fonte
Resumo:
De plus en plus d'applications ont pour objectif d'automatiser l'analyse des comportements humains afin d'aider ou de remplacer les experts qui réalisent actuellement ces analyses. Cette thèse traite de l'analyse des expressions faciales qui fournissent des informations clefs sur ces comportements. Les travaux réalisés portent sur une solution innovante permettant de définir efficacement une expression d'un visage, indépendamment de la morphologie du sujet. Pour s'affranchir des différences de morphologies entre les personnes, nous utilisons des modèles d'apparence spécifiques à la personne. Nous proposons une solution qui permet à la fois de tenir compte de l'aspect continu de l'espace des expressions et de la cohérence des différentes parties du visage entre elles. Pour ce faire, nous proposons une approche originale basée sur l'organisation des expressions. Nous montrons que l'organisation des expressions, telle que définie, est universelle et qu'elle peut être efficacement utilisée pour définir de façon unique une expression : une expression est caractérisée par son intensité et sa position relative par rapport aux autres expressions. La solution est comparée aux méthodes classiques basées sur l'apparence et montre une augmentation significative des résultats de reconnaissance sur 14 expressions non basiques. La méthode a été étendue à des sujets inconnus. L'idée principale est de créer un espace d'apparence plausible spécifique à la personne inconnue en synthétisant ses expressions basiques à partir de déformations apprises sur d'autres sujets et appliquées sur le neutre du sujet inconnu. La solution est aussi mise à l'épreuve dans un environnement multimodal plus complet dont l'objectif est la reconnaissance d'émotions lors de conversations spontanées. Les résultats montrent que la solution est efficace sur des données réelles et qu'elle permet l'extraction d'informations essentielles à l'analyse des émotions. Notre méthode a été mise en œuvre dans le cadre du challenge international AVEC 2012 (Audio/Visual Emotion Challenge) où nous avons fini 2nd, avec des taux de reconnaissance très proches de ceux obtenus par les vainqueurs. La comparaison des deux méthodes (la nôtre et celles des vainqueurs) semble montrer que l'extraction des caractéristiques pertinentes est la clef de tels systèmes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Baklouti, Malek. "Localisation du visage et extraction des éléments faciaux, pour la conception d'un mode d'interaction homme-machine". Versailles-St Quentin en Yvelines, 2009. http://www.theses.fr/2009VERS0035.

Texto completo da fonte
Resumo:
Cette thèse d’inscrit dans le cadre de conception d’Interface Homme-Machine gestuelle pour la commande d’un système d'assistance robotique. Nous nous sommes intéressés aux interfaces naturelles qui répondent bien à cette problématique. Les différents travaux de cette thèse se sont concentrés sur les algorithmes de traitement d’image pour la détection du visage et sa localisation en 3D qui permettent de proposer un moyen de contrôle qui s’adapte au degré d'incapacité de l'utilisateur. La problématique à été traitée incrémentalement suivant le système de vision utilisé : monoculaire puis stéréoscopique. Les travaux utilisant la vision monoculaire nous ont permis d’approcher la détection du visage planaire par des algorithmes d’apprentissage s’inspirant des travaux de Viola et Jones en boostant un comité de réseaux de neurones. Nous proposons dans la deuxième partie de ce travail une approche d’estimation de la pose du visage utilisant des séquences d'images stéréoscopiques pré-calibrées. L’approche proposée se compose de deux étapes : Estimation temps réel de la profondeur utilisant une séquence d’image stéréoscopique puis l’alignement d’un modèle générique sur le nuage de points 3D afin d’en déduire la pose
This work deals with Human-Machine Interface for assistive robotic systems. Assistive systems should be endowed with interfaces that are specifically designed for disabled people in order to enable them to control the system with the most natural and less tiring way. This is the primary concern of this work. More precisely, we were interested in developing a vision based interface using user’s head movement. The problem was tackled incrementally following the system used: monocular and stereoscopic camera. Using monocular camera, we proposed a new approach for learning faces using a committee of neural networks generated using the well known Adaboost. We proposed training the neural network with reduced space Haar-like features instead of working with image pixels themselves. In the second part, we are proposing to tackle the head pose estimation in its fine level using stereo vision approach. The framework can be break down into two parts: The first part consists in estimating the 3D points set using stereoscopic acquisition and the second one deals with aligning a Candide-1 model with the 3D points set. Under alignment, the transformation matrix of the Candide model corresponds to the head pose parameters
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Dapogny, Arnaud. "A walk through randomness for face analysis in unconstrained environments". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066662/document.

Texto completo da fonte
Resumo:
L'analyse automatique des expressions faciales est une étape clef pour le développement d'interfaces intelligentes ou l'analyse de comportements. Toutefois, celle-ci est rendue difficile par un grand nombre de facteurs, pouvant être d'ordre morphologiques, liés à l'orientation du visage ou à la présence d'occultations. Nous proposons des adaptations des Random Forest permettant d' adresser ces problématiques:- Le développement des Pairwise Conditional Random Forest, consistant en l'apprentissage de modèles à partir de paires d'images expressives. Les arbres sont de plus conditionnés par rapport à l'expression de la première image afin de réduire la variabilité des transitions. De plus, il est possible de conditionner les arbres en rapport avec une estimation de la pose du visage afin de permettre la reconnaissance quel que soit le point de vue considéré.- L'utilisation de réseaux de neurones auto-associatifs pour modéliser localement l'apparence du visage. Ces réseaux fournissent une mesure de confiance qui peut être utilisée dans le but de pondérer des Random Forests définies sur des sous-espaces locaux du visage. Ce faisant, il est possible de fournir une prédiction d'expression robuste aux occultations partielles du visage.- Des améliorations du récemment proposé algorithme des Neural Decision Forests, lesquelles consistent en une procédure d'apprentissage simplifiée, ainsi qu'en une évaluation "greedy" permettant une évaluation plus rapide, avec des applications liées à l'apprentissage en ligne de représentations profondes pour la reconnaissance des expressions, ainsi que l'alignement de points caractéristiques
Automatic face analysis is a key to the development of intelligent human-computer interaction systems and behavior understanding. However, there exist a number of factors that makes face analysis a difficult problem. This include morphological differences between different persons, head pose variations as well as the possibility of partial occlusions. In this PhD, we propose a number of adaptations of the so-called Random Forest algorithm to specifically adress those problems. Mainly, those improvements consist in:– The development of a Pairwise Conditional Random Forest framework, that consists in training Random Forests upon pairs of expressive images. Pairwise trees are conditionned on the expression label of the first frame of a pair to reduce the ongoing expression transition variability. Additionnally, trees can be conditionned upon a head pose estimate to peform facial expression recognition from an arbitrary viewpoint.– The design of a hierarchical autoencoder network to model the local face texture patterns. The reconstruction error of this network provides a confidence measurement that can be used to weight Randomized decision trees trained on spatially-defined local subspace of the face. Thus, we can provide an expression prediction that is robust to partial occlusions.– Improvements over the very recent Neural Decision Forests framework, that include both a simplified training procedure as well as a new greedy evaluation procedure, that allows to dramatically improve the evaluation runtime, with applications for online learning and, deep learning convolutional neural network-based features for facial expression recognition as well as feature point alignement
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Alioua, Nawal. "Extraction et analyse des caractéristiques faciales : application à l'hypovigilance chez le conducteur". Thesis, Rouen, INSA, 2015. http://www.theses.fr/2015ISAM0002/document.

Texto completo da fonte
Resumo:
L'étude des caractéristiques faciales a suscité l'intérêt croissant de la communauté scientifique et des industriels. En effet, ces caractéristiques véhiculent des informations non verbales qui jouent un rôle clé dans la communication entre les hommes. De plus, elles sont très utiles pour permettre une interaction entre l'homme et la machine. De ce fait, l'étude automatique des caractéristiques faciales constitue une tâche primordiale pour diverses applications telles que les interfaces homme-machine, la science du comportement, la pratique clinique et la surveillance de l'état du conducteur. Dans cette thèse, nous nous intéressons à la surveillance de l'état du conducteur à travers l'analyse de ses caractéristiques faciales. Cette problématique sollicite un intérêt universel causé par le nombre croissant des accidents routiers, dont une grande partie est provoquée par une dégradation de la vigilance du conducteur, connue sous le nom de l'hypovigilance. En effet, nous pouvons distinguer trois états d'hypovigilance. Le premier, et le plus critique, est la somnolence qui se manifeste par une incapacité à se maintenir éveillé et se caractérise par les périodes de micro-sommeil correspondant à des endormissements de 2 à 6 secondes. Le second est la fatigue qui se définit par la difficulté croissante à maintenir une tâche à terme et se caractérise par une augmentation du nombre de bâillements. Le troisième est l'inattention qui se produit lorsque l'attention est détournée de l'activité de conduite et se caractérise par le maintien de la pose de la tête en une direction autre que frontale. L'objectif de cette thèse est de concevoir des approches permettant de détecter l'hypovigilance chez le conducteur en analysant ses caractéristiques faciales. En premier lieu, nous avons proposé une approche dédiée à la détection de la somnolence à partir de l'identification des périodes de micro-sommeil à travers l'analyse des yeux. En second lieu, nous avons introduit une approche permettant de relever la fatigue à partir de l'analyse de la bouche afin de détecter les bâillements. Du fait qu'il n'existe aucune base de données publique dédiée à la détection de l'hypovigilance, nous avons acquis et annoté notre propre base de données représentant différents sujets simulant des états d'hypovigilance sous des conditions d'éclairage réelles afin d'évaluer les performances de ces deux approches. En troisième lieu, nous avons développé deux nouveaux estimateurs de la pose de la tête pour permettre à la fois de détecter l'inattention du conducteur et de déterminer son état, même quand ses caractéristiques faciales (yeux et bouche) ne peuvent être analysées suite à des positions non-frontales de la tête. Nous avons évalué ces deux estimateurs sur la base de données publique Pointing'04. Ensuite, nous avons acquis et annoté une base de données représentant la variation de la pose de la tête du conducteur pour valider nos estimateurs sous un environnement de conduite
Studying facial features has attracted increasing attention in both academic and industrial communities. Indeed, these features convey nonverbal information that plays a key role in humancommunication. Moreover, they are very useful to allow human-machine interactions. Therefore, the automatic study of facial features is an important task for various applications includingrobotics, human-machine interfaces, behavioral science, clinical practice and monitoring driver state. In this thesis, we focus our attention on monitoring driver state through its facial features analysis. This problematic solicits a universal interest caused by the increasing number of road accidents, principally induced by deterioration in the driver vigilance level, known as hypovigilance. Indeed, we can distinguish three hypovigilance states. The first and most critical one is drowsiness, which is manifested by an inability to keep awake and it is characterized by microsleep intervals of 2-6 seconds. The second one is fatigue, which is defined by the increasing difficulty of maintaining a task and it is characterized by an important number of yawns. The third and last one is the inattention that occurs when the attention is diverted from the driving activity and it is characterized by maintaining the head pose in a non-frontal direction.The aim of this thesis is to propose facial features based approaches allowing to identify driver hypovigilance. The first approach was proposed to detect drowsiness by identifying microsleepintervals through eye state analysis. The second one was developed to identify fatigue by detecting yawning through mouth analysis. Since no public hypovigilance database is available,we have acquired and annotated our own database representing different subjects simulating hypovigilance under real lighting conditions to evaluate the performance of these two approaches. Next, we have developed two driver head pose estimation approaches to detect its inattention and also to determine its vigilance level even if the facial features (eyes and mouth) cannot be analyzed because of non-frontal head positions. We evaluated these two estimators on the public database Pointing'04. Then, we have acquired and annotated a driver head pose database to evaluate our estimators in real driving conditions
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ni, Weiyuan. "Recalage d'images de visage". Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT045/document.

Texto completo da fonte
Resumo:
Etude bibliographique sur le recalage d'images de visage et sur le recalage d'images et travail en collaboration avec Son VuS, pour définir la précision nécessaire du recalage en fonction des exigences des méthodes de reconnaissance de visages
Face alignment is an important step in a typical automatic face recognition system.This thesis addresses the alignment of faces for face recognition applicationin video surveillance context. The main challenging factors of this research includethe low quality of images (e.g., low resolution, motion blur, and noise), uncontrolledillumination conditions, pose variations, expression changes, and occlusions. In orderto deal with these problems, we propose several face alignment methods using differentstrategies. The _rst part of our work is a three-stage method for facial pointlocalization which can be used for correcting mis-alignment errors. While existingalgorithms mostly rely on a priori knowledge of facial structure and on a trainingphase, our approach works in an online mode without requirements of pre-de_nedconstraints on feature distributions. The proposed method works well on images underexpression and lighting variations. The key contributions of this thesis are aboutjoint image alignment algorithms where a set of images is simultaneously alignedwithout a biased template selection. We respectively propose two unsupervised jointalignment algorithms : \Lucas-Kanade entropy congealing" (LKC) and \gradient correlationcongealing" (GCC). In LKC, an image ensemble is aligned by minimizing asum-of-entropy function de_ned over all images. GCC uses gradient correlation coef-_cient as similarity measure. The proposed algorithms perform well on images underdi_erent conditions. To further improve the robustness to mis-alignments and thecomputational speed, we apply a multi-resolution framework to joint face alignmentalgorithms. Moreover, our work is not limited in the face alignment stage. Since facealignment and face acquisition are interrelated, we develop an adaptive appearanceface tracking method with alignment feedbacks. This closed-loop framework showsits robustness to large variations in target's state, and it signi_cantly decreases themis-alignment errors in tracked faces
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Dahmane, Mohamed. "Analyse de mouvements faciaux à partir d'images vidéo". Thèse, 2011. http://hdl.handle.net/1866/7120.

Texto completo da fonte
Resumo:
Lors d'une intervention conversationnelle, le langage est supporté par une communication non-verbale qui joue un rôle central dans le comportement social humain en permettant de la rétroaction et en gérant la synchronisation, appuyant ainsi le contenu et la signification du discours. En effet, 55% du message est véhiculé par les expressions faciales, alors que seulement 7% est dû au message linguistique et 38% au paralangage. L'information concernant l'état émotionnel d'une personne est généralement inférée par les attributs faciaux. Cependant, on ne dispose pas vraiment d'instruments de mesure spécifiquement dédiés à ce type de comportements. En vision par ordinateur, on s'intéresse davantage au développement de systèmes d'analyse automatique des expressions faciales prototypiques pour les applications d'interaction homme-machine, d'analyse de vidéos de réunions, de sécurité, et même pour des applications cliniques. Dans la présente recherche, pour appréhender de tels indicateurs observables, nous essayons d'implanter un système capable de construire une source consistante et relativement exhaustive d'informations visuelles, lequel sera capable de distinguer sur un visage les traits et leurs déformations, permettant ainsi de reconnaître la présence ou absence d'une action faciale particulière. Une réflexion sur les techniques recensées nous a amené à explorer deux différentes approches. La première concerne l'aspect apparence dans lequel on se sert de l'orientation des gradients pour dégager une représentation dense des attributs faciaux. Hormis la représentation faciale, la principale difficulté d'un système, qui se veut être général, est la mise en œuvre d'un modèle générique indépendamment de l'identité de la personne, de la géométrie et de la taille des visages. La démarche qu'on propose repose sur l'élaboration d'un référentiel prototypique à partir d'un recalage par SIFT-flow dont on démontre, dans cette thèse, la supériorité par rapport à un alignement conventionnel utilisant la position des yeux. Dans une deuxième approche, on fait appel à un modèle géométrique à travers lequel les primitives faciales sont représentées par un filtrage de Gabor. Motivé par le fait que les expressions faciales sont non seulement ambigües et incohérentes d'une personne à une autre mais aussi dépendantes du contexte lui-même, à travers cette approche, on présente un système personnalisé de reconnaissance d'expressions faciales, dont la performance globale dépend directement de la performance du suivi d'un ensemble de points caractéristiques du visage. Ce suivi est effectué par une forme modifiée d'une technique d'estimation de disparité faisant intervenir la phase de Gabor. Dans cette thèse, on propose une redéfinition de la mesure de confiance et introduisons une procédure itérative et conditionnelle d'estimation du déplacement qui offrent un suivi plus robuste que les méthodes originales.
In a face-to-face talk, language is supported by nonverbal communication, which plays a central role in human social behavior by adding cues to the meaning of speech, providing feedback, and managing synchronization. Information about the emotional state of a person is usually carried out by facial attributes. In fact, 55% of a message is communicated by facial expressions whereas only 7% is due to linguistic language and 38% to paralanguage. However, there are currently no established instruments to measure such behavior. The computer vision community is therefore interested in the development of automated techniques for prototypic facial expression analysis, for human computer interaction applications, meeting video analysis, security and clinical applications. For gathering observable cues, we try to design, in this research, a framework that can build a relatively comprehensive source of visual information, which will be able to distinguish the facial deformations, thus allowing to point out the presence or absence of a particular facial action. A detailed review of identified techniques led us to explore two different approaches. The first approach involves appearance modeling, in which we use the gradient orientations to generate a dense representation of facial attributes. Besides the facial representation problem, the main difficulty of a system, which is intended to be general, is the implementation of a generic model independent of individual identity, face geometry and size. We therefore introduce a concept of prototypic referential mapping through a SIFT-flow registration that demonstrates, in this thesis, its superiority to the conventional eyes-based alignment. In a second approach, we use a geometric model through which the facial primitives are represented by Gabor filtering. Motivated by the fact that facial expressions are not only ambiguous and inconsistent across human but also dependent on the behavioral context; in this approach, we present a personalized facial expression recognition system whose overall performance is directly related to the localization performance of a set of facial fiducial points. These points are tracked through a sequence of video frames by a modification of a fast Gabor phase-based disparity estimation technique. In this thesis, we revisit the confidence measure, and introduce an iterative conditional procedure for displacement estimation that improves the robustness of the original methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia