Literatura científica selecionada sobre o tema "Real-time cell analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Real-time cell analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Real-time cell analysis"
Vogt, Nina. "Real-time behavioral analysis". Nature Methods 18, n.º 2 (fevereiro de 2021): 123. http://dx.doi.org/10.1038/s41592-021-01072-z.
Texto completo da fontePranada, Albert L., Silke Metz, Andreas Herrmann, Peter C. Heinrich e Gerhard Müller-Newen. "Real Time Analysis of STAT3 Nucleocytoplasmic Shuttling". Journal of Biological Chemistry 279, n.º 15 (29 de dezembro de 2003): 15114–23. http://dx.doi.org/10.1074/jbc.m312530200.
Texto completo da fonteJaiswal, Devina, Armin Tahmasbi Rad, Mu-Ping Nieh, Kevin P. Claffey e Kazunori Hoshino. "Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis". Journal of Magnetism and Magnetic Materials 427 (abril de 2017): 7–13. http://dx.doi.org/10.1016/j.jmmm.2016.11.002.
Texto completo da fonteFregin, Bob, Fabian Czerwinski, Doreen Biedenweg, Salvatore Girardo, Stefan Groß, Konstanze Aurich e Oliver Otto. "Dynamic Real-Time Deformability Cytometry - Time-Resolved Mechanical Single Cell Analysis at 100 Cells/s". Biophysical Journal 118, n.º 3 (fevereiro de 2020): 605a. http://dx.doi.org/10.1016/j.bpj.2019.11.3267.
Texto completo da fonteCerignoli, Fabio, Yama A. Abassi, Brandon J. Lamarche, Garret Guenther, David Santa Ana, Diana Guimet, Wen Zhang, Jing Zhang e Biao Xi. "In vitro immunotherapy potency assays using real-time cell analysis". PLOS ONE 13, n.º 3 (2 de março de 2018): e0193498. http://dx.doi.org/10.1371/journal.pone.0193498.
Texto completo da fonteRappoport, J. Z. "Real-time analysis of clathrin-mediated endocytosis during cell migration". Journal of Cell Science 116, n.º 5 (15 de janeiro de 2003): 847–55. http://dx.doi.org/10.1242/jcs.00289.
Texto completo da fonteErsöz, M., S. Malkoç, EB Küçük, BS Bozkurt e SS Hakki. "Biocompatibility evaluation of orthodontic composite by real-time cell analysis". Human & Experimental Toxicology 35, n.º 8 (19 de julho de 2016): 833–38. http://dx.doi.org/10.1177/0960327115607944.
Texto completo da fonteSimons, Peter C., Sean M. Biggs, Anna Waller, Terry Foutz, Daniel F. Cimino, Qing Guo, Richard R. Neubig, Wei-Jen Tang, Eric R. Prossnitz e Larry A. Sklar. "Real-time Analysis of Ternary Complex on Particles". Journal of Biological Chemistry 279, n.º 14 (15 de janeiro de 2004): 13514–21. http://dx.doi.org/10.1074/jbc.m310306200.
Texto completo da fonteMazhar, Muhammad Waqar. "Molecular Analysis of Covid-19 Patient Real Time PCR and their Medicational Clinical Trials". Virology & Immunology Journal 5, n.º 3 (2 de agosto de 2021): 1–4. http://dx.doi.org/10.23880/vij-16000284.
Texto completo da fonteAoyama, Tadayoshi, Amalka De Zoysa, Qingyi Gu, Takeshi Takaki e Idaku Ishii. "Vision-Based Real-Time Microflow-Rate Control System for Cell Analysis". Journal of Robotics and Mechatronics 28, n.º 6 (20 de dezembro de 2016): 854–61. http://dx.doi.org/10.20965/jrm.2016.p0854.
Texto completo da fonteTeses / dissertações sobre o assunto "Real-time cell analysis"
Hong, Soonjin Barbee Kenneth A. "Quantitative analysis of cell-surface interactions and cell adhesion process in real-time /". Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2840.
Texto completo da fonteSchulz, Craig. "Microsequential injection systems for the real-time monitoring of glucose metabolism of live cells by enzymatic assay /". Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/8694.
Texto completo da fonteMaiuri, Paolo. "Single-cell and real-time analysis of transcription rates from integrated HIV-1 provirus". Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85935.
Texto completo da fonteShoshi, Astrit [Verfasser]. "Magnetic lab-on-a-chip for cell analysis : magnetoresistive-based real-time monitoring of dynamic cell-environment interactions / Astrit Shoshi". Bielefeld : Universitaetsbibliothek Bielefeld, 2013. http://d-nb.info/1036974502/34.
Texto completo da fonteLi, Min. "Kinetic analysis of Human T-cell leukemia virus type 1 gene expression". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228156327.
Texto completo da fonteZhou, Daming. "Modeling and Multi-Dimensional Analysis of a Proton Exchange Membrane Fuel Cell". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA011/document.
Texto completo da fonteBefore mass commercialization of proton exchange membrane fuel cell, the research on the design of appropriate control strategies and auxiliaries need to be done for achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An accurate mathematical PEMFC model can be used to observe the internal variables and state of fuel cell during its operation, and could further greatly help the system control strategy development.A comprehensive multi-physical dynamic model for PEMFC is developed in chapter I. The proposed model covers multi-physical domains for electric, fluidic and thermal features. Particularly, the transient phenomena in both fluidic and thermal domain are simultaneously considered in the proposed model, such as the dynamic behaviors of fuel cell membrane water content and temperature. Therefore, this model can be used to analyze the coupling effects of dynamic variables among different physical domains.Based on the developed multi-physical PEMFC model, a full two-dimensional multi-physical model is further presented. The proposed model covers electrical and fluidic domains with an innovative 2-D modeling approach. In order to accurately describe the characteristics of reactant gas convection in the channels and diffusion through the gas diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively analyzed by fully taking the geometric form of flow field into consideration, such as the reactant gas pressure drop due to the pipeline sharp and U-bends. Based on the developed 2-D fluidic domain modeling results, spatial physical quantity distributions in electrical domain can be further obtained. Therefore, this 2-D PEMFC model can be use to study the influences of modeling parameters on the local multi-dimensional performance prediction. The simulation and experimental test are then performed to validate the proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack.In chapter II, analyses of dynamic phenomena step responses are conducted based on the developed multi-physical dynamic PEMFC model using the relative gain array (RGA) method for various control input variables, in order to quantitatively analyze the coupling effects in different physical domains, such as the interactions of membrane water content and temperature. Based on the calculated values of relative gain array, the proposed model can be considered as a fuel cell MIMO system, which could be divided into two independent control sub-systems by minimizing parameter coupling effects between each other. Due to the closely coupled parameters in the proposed first control sub-system, a decoupling control method is recommended to achieve optimized control results. The coupling analysis presented in this thesis can help engineers to design and optimize the fuel cell control strategies, especially for the water and thermal management in fuel cell systems
Czerwieniec, Gregg Allen. "Single cell analysis using bio-aerosol mass spectrometry : development and applications for the real-time detection of bio-warfare pathogens /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Texto completo da fonteAL, DOSSARY REEM. "Activation of human endogenous retrovirus K and cellular modifications in human melanoma cell lines: gene expression analysis". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1389.
Texto completo da fonteBoussemaere, Luc. "Investigating off-axis digital holographic microscopy with a source of partial spatial coherence as a real-time sensor for cell cultures". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209086.
Texto completo da fonteDoctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Pretorius, Ashley. "Functional analysis of the mouse RBBP6 gene using Interference RNA". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4435_1264363734.
Texto completo da fonteThe aim of this thesis was to investigate the cellular role of the mouse RBBP6 gene using the interference RNA (RNAi) gene targeting technology and also to understand the relevance of two promoters for the RBBP6 gene.
Livros sobre o assunto "Real-time cell analysis"
SAHAIDAK, Mykhailo, ed. STRATEGIC IMPERATIVES OF MODERN MANAGEMENT. Kyiv National Economic University named after Vadym Hetman, 2024. http://dx.doi.org/10.35668/978-966-926-500-5.
Texto completo da fonteCapítulos de livros sobre o assunto "Real-time cell analysis"
Haim-Vilmovsky, Liora. "High-Throughput Single-Cell Real-Time Quantitative PCR Analysis". In Methods in Molecular Biology, 177–83. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9240-9_11.
Texto completo da fonteSklar, L. A., W. N. Swann, S. P. Fay e Z. G. Oades. "Real-Time Analysis of Macromolecular Assembly During Cell Activation". In Biology of Cellular Transducing Signals, 1–10. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0559-0_1.
Texto completo da fonteIsh-Shalom, Shahar, e Amnon Lichter. "Analysis of Fungal Gene Expression by Real Time Quantitative PCR". In Molecular and Cell Biology Methods for Fungi, 103–14. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-611-5_7.
Texto completo da fonteGoudar, Chetan, Richard Biener, Chun Zhang, James Michaels, James Piret e Konstantin Konstantinov. "Towards Industrial Application of Quasi Real-Time Metabolic Flux Analysis for Mammalian Cell Culture". In Cell Culture Engineering, 99–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/10_020.
Texto completo da fonteEdvardsson, Louise, e Tor Olofsson. "Real-Time PCR Analysis for Blood Cell Lineage Specific Markers". In DNA and RNA Profiling in Human Blood, 313–22. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-553-4_21.
Texto completo da fonteOng, Seow Theng, e Navin Kumar Verma. "Live Cell Imaging and Analysis to Capture T-Cell Motility in Real-Time". In Methods in Molecular Biology, 33–40. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9036-8_5.
Texto completo da fonteJacobi, Angela, Philipp Rosendahl, Martin Kräter, Marta Urbanska, Maik Herbig e Jochen Guck. "Analysis of Biomechanical Properties of Hematopoietic Stem and Progenitor Cells Using Real-Time Fluorescence and Deformability Cytometry". In Stem Cell Mobilization, 135–48. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9574-5_11.
Texto completo da fonteBye, Alexander P., Zeki Ilkan, Amanda J. Unsworth e Chris I. Jones. "Immobilization of Nonactivated Unfixed Platelets for Real-Time Single-Cell Analysis". In Methods in Molecular Biology, 1–11. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8585-2_1.
Texto completo da fonteShulman, Ziv, e Ronen Alon. "Real-Time Analysis of Integrin-Dependent Transendothelial Migration and Integrin-Independent Interstitial Motility of Leukocytes". In Integrin and Cell Adhesion Molecules, 31–45. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-166-6_3.
Texto completo da fonteBrouwer, Ineke, Marit A. C. de Kort e Tineke L. Lenstra. "Measuring Transcription Dynamics of Individual Genes Inside Living Cells". In Single Molecule Analysis, 235–65. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Real-time cell analysis"
Roper, Carissa J., Chu Ma e Susan C. Hagness. "Analysis of a TEM Cell Designed for Real-Time Observation of Pulsed Microwave-Induced Thermoelastic Tissue Expansion". In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 2515–16. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686786.
Texto completo da fonteWei, Yuanyuan, Syeda Aimen Abbasi, Meiai Lin, Liwei Tan, Shanhang Luo, Yuankai Ma, Shiyue Liu, Yi-Ping Ho, Ho-Pui Ho e Wu Yuan. "Efficient Single-Cell Analysis through a Cost-Effective Droplet Microfluidic System". In CLEO: Applications and Technology, ATu3B.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu3b.7.
Texto completo da fonteSun, Jiasong, Yefeng Shu e Chao Zuo. "Adaptive Optical Quantitative Phase Imaging of Living Cells Based on Fourier Ptychographic Microscopy". In Adaptive Optics: Methods, Analysis and Applications, OW1F.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/aopt.2024.ow1f.3.
Texto completo da fonteNoubir, Safouane, Yannick Bornat e Bertrand Le Gal. "Real-Time Analysis of Living Biological Cell Activity". In 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE, 2018. http://dx.doi.org/10.1109/dasip.2018.8596862.
Texto completo da fonteXu, Wenkui, Liguo Chen, Haibo Huang, Leilei Zhang, Xiangpeng Li, Yadi Li e Lining Sun. "Biomechanical analysis of yeast cell based a piezoresistive cantilever sensor". In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016. http://dx.doi.org/10.1109/rcar.2016.7784058.
Texto completo da fonteAoyama, Tadayoshi, Amalka De Zoysa, Qingyi Gu, Takeshi Takaki e Idaku Ishii. "Real-time flow-rate control system for cell analysis". In the 2015 Conference. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2783449.2783499.
Texto completo da fonteSchrimpf, J., M. Lind e G. Mathisen. "Real-time analysis of a multi-robot sewing cell". In 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505666.
Texto completo da fonteMota, Sakina Mohammed, Carl A. Gregory, Kristen C. Maitland, Maryellen L. Giger, Roland R. Kaunas, Robert E. Rogers, Andrew W. Haskell e Eoin P. McNeill. "Morphological cell image analysis for real-time monitoring of stem cell culture". In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI, editado por Thomas G. Brown e Tony Wilson. SPIE, 2019. http://dx.doi.org/10.1117/12.2507469.
Texto completo da fonteFregin, Bob, Doreen Biedenweg, Salvatore Girardo, Stefan Groß, Konstanze Aurich e Oliver Otto. "Dynamic real-time deformability cytometry: Time-resolved mechanical single cell analysis at 100 cells/s". In High-Speed Biomedical Imaging and Spectroscopy VII, editado por Keisuke Goda e Kevin K. Tsia. SPIE, 2022. http://dx.doi.org/10.1117/12.2624175.
Texto completo da fontePark, Jonghan, e Soonhoi Ha. "Performance Analysis of Parallel Execution of H.264 Encoder on the Cell Processor". In 2007 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia. IEEE, 2007. http://dx.doi.org/10.1109/estmed.2007.4375797.
Texto completo da fonteRelatórios de organizações sobre o assunto "Real-time cell analysis"
Conery, Ian, Brittany Bruder, Connor Geis, Jessamin Straub, Nicholas Spore e Katherine Brodie. Applicability of CoastSnap, a crowd-sourced coastal monitoring approach for US Army Corps of Engineers district use. Engineer Research and Development Center (U.S.), setembro de 2023. http://dx.doi.org/10.21079/11681/47568.
Texto completo da fonteHeifetz, Yael, e Michael Bender. Success and failure in insect fertilization and reproduction - the role of the female accessory glands. United States Department of Agriculture, dezembro de 2006. http://dx.doi.org/10.32747/2006.7695586.bard.
Texto completo da fonteDelwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz e Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, fevereiro de 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Texto completo da fonteWANG, MIN, Sheng Chen, Changqing Zhong, Tao Zhang, Yongxing Xu, Hongyuan Guo, Xiaoying Wang, Shuai Zhang, Yan Chen e Lianyong Li. Diagnosis using artificial intelligence based on the endocytoscopic observation of the gastrointestinal tumours: a systematic review and meta-analysis. InPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, fevereiro de 2023. http://dx.doi.org/10.37766/inplasy2023.2.0096.
Texto completo da fonteMorrison, Dawn. The built environment of the US Air Force all-volunteer force : preliminary analysis of building trends. Engineer Research and Development Center (U.S.), setembro de 2024. http://dx.doi.org/10.21079/11681/49360.
Texto completo da fonteMorrison, Dawn. The built environment of the US Air Force all-volunteer force : preliminary analysis of building trends. Engineer Research and Development Center (U.S.), setembro de 2024. http://dx.doi.org/10.21079/11681/49369.
Texto completo da fonte