Artigos de revistas sobre o tema "Raw Material Criticality"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Raw Material Criticality".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Frenzel, M., J. Kullik, M. A. Reuter e J. Gutzmer. "Raw material ‘criticality’—sense or nonsense?" Journal of Physics D: Applied Physics 50, n.º 12 (20 de fevereiro de 2017): 123002. http://dx.doi.org/10.1088/1361-6463/aa5b64.
Texto completo da fonteLütkehaus, Hauke, Christian Pade, Matthias Oswald, Urte Brand, Tobias Naegler e Thomas Vogt. "Measuring raw-material criticality of product systems through an economic product importance indicator: a case study of battery-electric vehicles". International Journal of Life Cycle Assessment 27, n.º 1 (4 de dezembro de 2021): 122–37. http://dx.doi.org/10.1007/s11367-021-02002-z.
Texto completo da fonteHelbig, Christoph, Martin Bruckler, Andrea Thorenz e Axel Tuma. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments". Resources 10, n.º 8 (4 de agosto de 2021): 79. http://dx.doi.org/10.3390/resources10080079.
Texto completo da fonteGlöser, Simon, Luis Tercero Espinoza, Carsten Gandenberger e Martin Faulstich. "Raw material criticality in the context of classical risk assessment". Resources Policy 44 (junho de 2015): 35–46. http://dx.doi.org/10.1016/j.resourpol.2014.12.003.
Texto completo da fonteSchrijvers, Dieuwertje, Alessandra Hool, Gian Andrea Blengini, Wei-Qiang Chen, Jo Dewulf, Roderick Eggert, Layla van Ellen et al. "A review of methods and data to determine raw material criticality". Resources, Conservation and Recycling 155 (abril de 2020): 104617. http://dx.doi.org/10.1016/j.resconrec.2019.104617.
Texto completo da fonteMancini, Lucia, e Philip Nuss. "Responsible Materials Management for a Resource-Efficient and Low-Carbon Society". Resources 9, n.º 6 (5 de junho de 2020): 68. http://dx.doi.org/10.3390/resources9060068.
Texto completo da fonteFathia, Sarah, Tjahja Muhandri e Nugraha Edhi Suyatma. "Profil Bahan Perisa Kritis Halal dalam Peraturan BPOM No. 13/2020". Jurnal Mutu Pangan : Indonesian Journal of Food Quality 9, n.º 2 (31 de outubro de 2022): 92–102. http://dx.doi.org/10.29244/jmpi.2022.9.2.92.
Texto completo da fonteBlum, Ulrich, e Jiarui Zhong. "The Loss of Raw Material Criticality: Implications of the Collapse of Saudi Arabian Oil Exports". Intereconomics 56, n.º 6 (novembro de 2021): 362–70. http://dx.doi.org/10.1007/s10272-021-1015-4.
Texto completo da fonteGjoka, Margariti, Georgios Sempros, Stefanos Giaremis, Joseph Kioseoglou e Charalampos Sarafidis. "On Structural and Magnetic Properties of Substituted SmCo5 Materials". Materials 16, n.º 2 (5 de janeiro de 2023): 547. http://dx.doi.org/10.3390/ma16020547.
Texto completo da fonteKim, Juhan, Jungbae Lee, BumChoong Kim e Jinsoo Kim. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process". Resources Policy 60 (março de 2019): 225–33. http://dx.doi.org/10.1016/j.resourpol.2019.01.005.
Texto completo da fontePierpaoli, Mattia, Michał Rycewicz, Aneta Łuczkiewicz, Sylwia Fudala-Ksiązek, Robert Bogdanowicz e Maria Letizia Ruello. "Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation". Manufacturing Review 7 (2020): 7. http://dx.doi.org/10.1051/mfreview/2020006.
Texto completo da fonteKnoeri, Christof, Patrick A. Wäger, Anna Stamp, Hans-Joerg Althaus e Marcel Weil. "Towards a dynamic assessment of raw materials criticality: Linking agent-based demand — With material flow supply modelling approaches". Science of The Total Environment 461-462 (setembro de 2013): 808–12. http://dx.doi.org/10.1016/j.scitotenv.2013.02.001.
Texto completo da fonteCalvo, Guiomar, Alicia Valero e Antonio Valero. "Thermodynamic Approach to Evaluate the Criticality of Raw Materials and Its Application through a Material Flow Analysis in Europe". Journal of Industrial Ecology 22, n.º 4 (21 de julho de 2017): 839–52. http://dx.doi.org/10.1111/jiec.12624.
Texto completo da fonteRandebrock, Inka, Sylvia Marinova, Vanessa Bach, Rosalie Arendt e Matthias Finkbeiner. "Adapting the ESSENZ Method to Assess the Criticality of Construction Materials: Case Study of Herne, Germany". Resources 12, n.º 8 (2 de agosto de 2023): 92. http://dx.doi.org/10.3390/resources12080092.
Texto completo da fonteŠimková, Zuzana, Henrieta Pavolová e Lucia Bednárová. "Evaluation of exploiting barite, the critical raw material in Slovakia, and benefits of its mining". Mining of Mineral Deposits 15, n.º 2 (2021): 9–17. http://dx.doi.org/10.33271/mining15.02.009.
Texto completo da fonteBlagoeva, Darina, Alain Marmier, Patricia Alves Dias e Claudiu C Pavel. "A new methodology to assess the EU resilience to materials supply along the value chain: case of lithium for lithium-ion batteries in electric vehicles". Material Science & Engineering International Journal 4, n.º 3 (30 de junho de 2020): 73–81. http://dx.doi.org/10.15406/mseij.2020.04.00130.
Texto completo da fonteGreenwood, Matthew, Marc Wentker e Jens Leker. "A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology". Applied Energy 302 (novembro de 2021): 117512. http://dx.doi.org/10.1016/j.apenergy.2021.117512.
Texto completo da fonteWentker, Marc, Matthew Greenwood, Marius Chofor Asaba e Jens Leker. "A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies". Journal of Energy Storage 26 (dezembro de 2019): 101022. http://dx.doi.org/10.1016/j.est.2019.101022.
Texto completo da fonteCimprich, Alexander, Vanessa Bach, Christoph Helbig, Andrea Thorenz, Dieuwertje Schrijvers, Guido Sonnemann, Steven B. Young, Thomas Sonderegger e Markus Berger. "Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment". Journal of Industrial Ecology 23, n.º 5 (15 de abril de 2019): 1226–36. http://dx.doi.org/10.1111/jiec.12865.
Texto completo da fonteGlöser-Chahoud, Simon, Luis Tercero Espinoza, Rainer Walz e Martin Faulstich. "Taking the Step towards a More Dynamic View on Raw Material Criticality: An Indicator Based Analysis for Germany and Japan". Resources 5, n.º 4 (8 de dezembro de 2016): 45. http://dx.doi.org/10.3390/resources5040045.
Texto completo da fonteBussolesi, Micol, Giovanni Grieco, Alireza Eslami e Alessandro Cavallo. "Ophiolite Chromite Deposits as a New Source for the Production of Refractory Chromite Sands". Sustainability 12, n.º 17 (31 de agosto de 2020): 7096. http://dx.doi.org/10.3390/su12177096.
Texto completo da fonteBobba, Silvia, Isabella Bianco, Umberto Eynard, Samuel Carrara, Fabrice Mathieux e Gian Andrea Blengini. "Bridging Tools to Better Understand Environmental Performances and Raw Materials Supply of Traction Batteries in the Future EU Fleet". Energies 13, n.º 10 (15 de maio de 2020): 2513. http://dx.doi.org/10.3390/en13102513.
Texto completo da fonteKochnov, Oleg Yu, e Pavel A. Danilov. "Effects of various types of reflectors on the 99Mo production in the VVER-Ts reactor targets". Nuclear Energy and Technology 6, n.º 2 (19 de junho de 2020): 89–92. http://dx.doi.org/10.3897/nucet.6.54623.
Texto completo da fonteS. Randall, Wesley, David R. Nowicki, Gopikrishna Deshpande e Robert F. Lusch. "Converting knowledge into value". International Journal of Physical Distribution & Logistics Management 44, n.º 8/9 (30 de setembro de 2014): 655–70. http://dx.doi.org/10.1108/ijpdlm-08-2013-0223.
Texto completo da fontePelzeter, Julia, Vanessa Bach, Martin Henßler, Klaus Ruhland e Matthias Finkbeiner. "Enhancement of the ESSENZ Method and Application in a Case Study on Batteries". Resources 11, n.º 6 (25 de maio de 2022): 52. http://dx.doi.org/10.3390/resources11060052.
Texto completo da fonteLeite Munaretto, Elisangela Christiane de Pinheiro, e Maclovia Corrêa da Silva. "Textile waste as a resource for teaching, technology and art". Journal of Textile Engineering & Fashion Technology 9, n.º 1 (17 de janeiro de 2023): 1–5. http://dx.doi.org/10.15406/jteft.2023.09.00324.
Texto completo da fonteSharma, Astha, Dinesh Kumar e Navneet Arora. "Risk assessment for pharmaceutical industry in uncertain environment: An integrated multi-criteria decision-making approach". Decision Making: Applications in Management and Engineering 6, n.º 2 (15 de outubro de 2023): 293–340. http://dx.doi.org/10.31181/dmame622023688.
Texto completo da fonteSmekhova, I. E., L. V. Shigarova, P. I. Andreeva, E. V. Flisyuk e A. S. Dzyuba. "Application of Quality-by-Design Approach to Justify the Composition and Technology of Two-component Suppositories". Drug development & registration 11, n.º 4 (27 de novembro de 2022): 142–49. http://dx.doi.org/10.33380/2305-2066-2022-11-4-142-149.
Texto completo da fonteFodor, Kitti, e Beatrix Varga. "Can we predict the criticality now better than in 2017?" Multidiszciplináris Tudományok 13, n.º 2 (20 de dezembro de 2023): 289–96. http://dx.doi.org/10.35925/j.multi.2023.2.25.
Texto completo da fonteKostygov, Lyudmila, e Roman Golov. "Modern problems of technological development of industry: resource aspect". Scientific Works of the Free Economic Society of Russia 246, n.º 2 (2024): 228–53. http://dx.doi.org/10.38197/2072-2060-2024-246-2-228-253.
Texto completo da fonteKuntjoro, Sri. "CRITICALITY ANALYSIS OF URANIUM STORAGE FACILITY WITH FORMATION RACKS". JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA 19, n.º 1 (13 de março de 2017): 41. http://dx.doi.org/10.17146/tdm.2017.19.1.3251.
Texto completo da fonteYang, Jie, Hong Luo Zhu, Lin Wei Ma e Zheng Li. "An Evaluation of Critical Raw Materials for China". Advanced Materials Research 773 (setembro de 2013): 954–60. http://dx.doi.org/10.4028/www.scientific.net/amr.773.954.
Texto completo da fonteMachacek, Erika. "Constructing criticality by classification: Expert assessments of mineral raw materials". Geoforum 84 (agosto de 2017): 368–77. http://dx.doi.org/10.1016/j.geoforum.2017.03.028.
Texto completo da fonteJournal, Baghdad Science. "Comparison of Mercury Intrusion and Nitrogen Adsorption Measurements for the Characterization of Certain Natural Raw Materials Deposits". Baghdad Science Journal 7, n.º 1 (7 de março de 2010): 621–30. http://dx.doi.org/10.21123/bsj.7.1.621-630.
Texto completo da fonteMayer, Herbert, e Benedikt Gleich. "Measuring Criticality of Raw Materials: An Empirical Approach Assessing the Supply Risk Dimension of Commodity Criticality". Natural Resources 06, n.º 01 (2015): 56–78. http://dx.doi.org/10.4236/nr.2015.61007.
Texto completo da fonteTorrubia, Jorge, Antonio Valero e Alicia Valero. "Thermodynamic Rarity Assessment of Mobile Phone PCBs: A Physical Criticality Indicator in Times of Shortage". Entropy 24, n.º 1 (8 de janeiro de 2022): 100. http://dx.doi.org/10.3390/e24010100.
Texto completo da fonteGöçmen Polat, Elifcan, Melih Yücesan e Muhammet Gül. "A comparative framework for criticality assessment of strategic raw materials in Turkey". Resources Policy 82 (maio de 2023): 103511. http://dx.doi.org/10.1016/j.resourpol.2023.103511.
Texto completo da fonteBamforth, Douglas B. "Technological Efficiency and Tool Curation". American Antiquity 51, n.º 1 (janeiro de 1986): 38–50. http://dx.doi.org/10.2307/280392.
Texto completo da fonteGÖÇMEN POLAT, Elifcan. "Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects". International Scientific and Vocational Studies Journal 7, n.º 2 (31 de dezembro de 2023): 176–86. http://dx.doi.org/10.47897/bilmes.1397666.
Texto completo da fonteVolk, Emily K., Rebecca R. Beswick, Stephanie Kwon e Shaun M. Alia. "Electrochemical Activation of NiFe2O4 for the Oxygen Evolution Reaction in Alkaline Media". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2067. http://dx.doi.org/10.1149/ma2023-01362067mtgabs.
Texto completo da fonteHaridevan, Hima, David A. C. Evans, Arthur J. Ragauskas, Darren J. Martin e Pratheep K. Annamalai. "Valorisation of technical lignin in rigid polyurethane foam: a critical evaluation on trends, guidelines and future perspectives". Green Chemistry 23, n.º 22 (2021): 8725–53. http://dx.doi.org/10.1039/d1gc02744a.
Texto completo da fonteKasina, Monika, e Marek Michalik. "Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE". Mineralogia 47, n.º 1-4 (1 de dezembro de 2016): 15–28. http://dx.doi.org/10.1515/mipo-2017-0004.
Texto completo da fonteRiskadayanti, Octavia, Muhammad Hisjam e Y. Yuniaristanto. "Mixed-Integer Linear Programming Model for Production Planning: A Case Study at Sawn Timber Production". Jurnal Teknik Industri 21, n.º 2 (30 de agosto de 2020): 163–73. http://dx.doi.org/10.22219/jtiumm.vol21.no2.163-173.
Texto completo da fonteFabbri, Antonin, Jean-Claude Morel e Domenico Gallipoli. "Assessing the performance of earth building materials: a review of recent developments". RILEM Technical Letters 3 (22 de dezembro de 2018): 46–58. http://dx.doi.org/10.21809/rilemtechlett.2018.71.
Texto completo da fonteBugga, Ratnakumar. "(Invited) Safety Behavior of Lyten’s High-Energy Li-S Cells with 3D Graphene™". ECS Meeting Abstracts MA2023-02, n.º 3 (22 de dezembro de 2023): 473. http://dx.doi.org/10.1149/ma2023-023473mtgabs.
Texto completo da fonteVikentiev, I. V. "Critical and Strategic Minerals in the Russian Federation". Геология рудных месторождений 65, n.º 5 (1 de setembro de 2023): 463–75. http://dx.doi.org/10.31857/s0016777023050106.
Texto completo da fonteIglesias-Émbil, Marta, Alejandro Abadías, Alicia Valero, Guiomar Calvo, Markus Andreas Reuter e Abel Ortego. "Criticality and Recyclability Assessment of Car Parts—A Thermodynamic Simulation-Based Approach". Sustainability 15, n.º 1 (21 de dezembro de 2022): 91. http://dx.doi.org/10.3390/su15010091.
Texto completo da fonteGrundy, Daisy, Alwin Abraham e Michael Wilde. "Investigating the Chemical Composition of Lanolin Waste to Improve the Production of Sustainable Natural Fibre Materials". ChromCom 1, n.º 7 (31 de março de 2023): 18–25. http://dx.doi.org/10.54516/ce7ta1.
Texto completo da fonteGonçalves, António Pereira, Elsa Branco Lopes, Judith Monnier, Eric Alleno, Claude Godart, Maria de Fátima Montemor, Jean Baptiste Vaney e Bertrand Lenoir. "Tetrahedrites for Low Cost and Sustainable Thermoelectrics". Solid State Phenomena 257 (outubro de 2016): 135–38. http://dx.doi.org/10.4028/www.scientific.net/ssp.257.135.
Texto completo da fonteZhang, Ruochun, Yulin Qi, Chao Ma, Jinfeng Ge, Qiaozhuan Hu, Fu-Jun Yue, Si-Liang Li e Dietrich A. Volmer. "Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing". Molecules 26, n.º 1 (1 de janeiro de 2021): 178. http://dx.doi.org/10.3390/molecules26010178.
Texto completo da fonte