Siga este link para ver outros tipos de publicações sobre o tema: Rare earth metals.

Artigos de revistas sobre o tema "Rare earth metals"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Rare earth metals".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Djuraev, Davron Rakhmonovich, e Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements". American Journal of Applied sciences 03, n.º 01 (30 de janeiro de 2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Texto completo da fonte
Resumo:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Giacalone, Joseph A. "The Market For The "Not-So-Rare" Rare Earth Elements". Journal of International Energy Policy (JIEP) 1, n.º 1 (3 de maio de 2012): 11–18. http://dx.doi.org/10.19030/jiep.v1i1.7013.

Texto completo da fonte
Resumo:
This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Nickels, Liz. "Reclaiming rare earth metals". Metal Powder Report 75, n.º 4 (julho de 2020): 189–92. http://dx.doi.org/10.1016/j.mprp.2019.12.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tárnok, Attila. "Counting rare earth metals". Cytometry Part A 103, n.º 8 (agosto de 2023): 618. http://dx.doi.org/10.1002/cyto.a.24784.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Johansson, Börje, Lars Nordström, Olle Eriksson e M. S. S. Brooks. "Magnetism in Rare-Earth Metals and Rare-Earth Intermetallic Compounds". Physica Scripta T39 (1 de janeiro de 1991): 100–109. http://dx.doi.org/10.1088/0031-8949/1991/t39/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Matakova, Rema, e K. Sagadieva. "Electrochemistry of rare earth metals". Chemical Bulletin of Kazakh National University, n.º 2 (15 de maio de 2012): 114. http://dx.doi.org/10.15328/chemb_2012_2114-124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kurysheva, V. V., E. A. Ivanova e P. E. Prokhorva. "Extractants for rare earth metals". Chimica Techno Acta 3, n.º 2 (2016): 97–120. http://dx.doi.org/10.15826/chimtech.2016.3.2.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Netzer, F. P., e J. A. D. Matthew. "Surfaces of rare earth metals". Reports on Progress in Physics 49, n.º 6 (1 de junho de 1986): 621–81. http://dx.doi.org/10.1088/0034-4885/49/6/001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Silver, G. L. "Reactions of Rare Earth Metals". Journal of Chemical Education 72, n.º 10 (outubro de 1995): 956. http://dx.doi.org/10.1021/ed072p956.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Isshiki, Minoru. "Purification of rare earth metals". Vacuum 47, n.º 6-8 (junho de 1996): 885–87. http://dx.doi.org/10.1016/0042-207x(96)00087-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ragnarsdóttir, Kristín Vala. "Rare metals getting rarer". Nature Geoscience 1, n.º 11 (novembro de 2008): 720–21. http://dx.doi.org/10.1038/ngeo302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Giacalone, Joseph A., e Genai Greenidge. "China, The World Trade Organization, And The Market For Rare Earth Minerals". International Business & Economics Research Journal (IBER) 12, n.º 3 (19 de fevereiro de 2013): 257. http://dx.doi.org/10.19030/iber.v12i3.7669.

Texto completo da fonte
Resumo:
Rare earth elements (also referred to as rare earth minerals, rare earth metals, green elements, rare earths or simply REEs) are comprised of 17 elements of the periodic table. The metals are often found combined together in ores and must be separated into its individual elements. On the supply side of the market, China is currently the largest producer of rare earth elements in the world, mining at least 90% of total world production. Consequently, many countries around the world rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. With one supplier effectively monopolizing the rare earth industry, this imposes severe supply-chain risks to the producers of products that rely on rare earth minerals. After several actions that have restricted the supply, the United States, the European Union, and Japan have challenged China for violating provisions of its membership in the World Trade Organization. This paper will examine the rare earth industry, Chinas near-monopoly, global supply-chain risks, and strategies to reduce dependence on China, including the invocation of the WTOs dispute resolution process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Akanova, G. Zh, A. G. Ismailova e D. Kh Kamysbayev. "Separation methods of rare earth metals". Vestnik KazNRTU 141, n.º 5 (2020): 749–54. http://dx.doi.org/10.51301/vest.su.2020.v141.i5.126.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Troshin, A., e A. Borukhovich. "Rare earth metals and new physics". Nanoindustry Russia, n.º 6 (2015): 42–49. http://dx.doi.org/10.22184/1993-8578.2015.60.6.42.49.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wackett, Lawrence P. "Microbial extraction of rare earth metals". Microbial Biotechnology 15, n.º 4 (30 de março de 2022): 1296–97. http://dx.doi.org/10.1111/1751-7915.14055.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Lyubov, D. M., e A. A. Trifonov. "Polyhydride Complexes of Rare-Earth Metals". INEOS OPEN 3, n.º 1 (julho de 2020): 1–19. http://dx.doi.org/10.32931/io2001r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bochkarev, Mikhail N. "Arene complexes of rare-earth metals". Russian Chemical Reviews 69, n.º 9 (30 de setembro de 2000): 783–94. http://dx.doi.org/10.1070/rc2000v069n09abeh000601.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Vajda, P., e J. N. Daou. "Lattice defects in rare-earth metals". Philosophical Magazine A 63, n.º 5 (maio de 1991): 883–96. http://dx.doi.org/10.1080/01418619108213922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Stirling, W. G., K. A. McEwen e C. K. Loong. "Intermultiplet Transitions in Rare-Earth Metals". Physica B+C 136, n.º 1-3 (janeiro de 1986): 420–23. http://dx.doi.org/10.1016/s0378-4363(86)80107-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Yakovkin, I. N. "Valence of “divalent” rare earth metals". Applied Surface Science 256, n.º 15 (maio de 2010): 4845–49. http://dx.doi.org/10.1016/j.apsusc.2010.01.114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan e S. D. Barrett. "Surface structure of rare earth metals". Surface Science Letters 251-252 (julho de 1991): A354. http://dx.doi.org/10.1016/0167-2584(91)90958-t.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan e S. D. Barrett. "Surface structure of rare earth metals". Surface Science 251-252 (julho de 1991): 722–26. http://dx.doi.org/10.1016/0039-6028(91)91086-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hachiya, Kan, e Yasuhiko Ito. "Interatomic potentials for rare-earth metals". Journal of Physics: Condensed Matter 11, n.º 34 (16 de agosto de 1999): 6543–51. http://dx.doi.org/10.1088/0953-8984/11/34/306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Campbell, Gary A. "Rare earth metals: a strategic concern". Mineral Economics 27, n.º 1 (11 de abril de 2014): 21–31. http://dx.doi.org/10.1007/s13563-014-0043-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wang, Shijie. "Rare Earth Metals: Resourcefulness and Recovery". JOM 65, n.º 10 (29 de agosto de 2013): 1317–20. http://dx.doi.org/10.1007/s11837-013-0732-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lyubov, D. M., e A. A. Trifonov. "Benzyl complexes of rare earth metals". Russian Chemical Bulletin 73, n.º 6 (junho de 2024): 1497–540. http://dx.doi.org/10.1007/s11172-024-4271-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Chernyi, S. A. "Secondary Resources of Rare Еarth Мetals". Ecology and Industry of Russia 24, n.º 9 (1 de setembro de 2020): 44–50. http://dx.doi.org/10.18412/1816-0395-2020-9-44-50.

Texto completo da fonte
Resumo:
The article provides an overview of the main existing methods for recycling rare earth metals from various types of waste. It was noted that the demand for rare-earth metals is increasing annually due to the growth of advanced technologies, mainly in the sectors of electronics, power engineering and photonics. It has been established that in countries producing final products of high processing, the chemical-technological processes of processing goods that have worked out their life cycle, and, first of all, fluorescent lamps, NdFeB magnets from electronic devices, and nickel-metal hydride (NiMeH) batteries containing rare earths are most quickly created. The most profitable and recycling option is the reuse of products containing rare-earth metals, however, such technologies are applicable for a narrow range of waste. Another important area of REM recycling is the processing of industrial waste. For countries with developed mining and chemical industries, mining processing technologies are attractive. It is shown that for Russia, more appropriate are schemes for the disposal of industrial waste, primarily waste from the production of apatite concentrate. The main problems of the development of REM recycling are identified: low content and dispersion of rare earths in waste; the presence of impurities that impede the extraction of valuable components and the toxicity of the used recycling schemes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Liu, Hang, Yao Zhang, Yikun Luan, Huimin Yu e Dianzhong Li. "Research Progress in Preparation and Purification of Rare Earth Metals". Metals 10, n.º 10 (15 de outubro de 2020): 1376. http://dx.doi.org/10.3390/met10101376.

Texto completo da fonte
Resumo:
The purity of rare earth metals is one of the most important factors to research and develop high technique materials. However, high purity rare earth metals are not easily achieved. This review summarizes the preparation and purification methods of rare earth metals. First, the preparation principle and process of molten salt electrolysis and metal thermal reduction are introduced. The main sources of metallic impurities and interstitial impurities in rare earth metals as well as the action mechanism of reducing the concentration of different impurities are analyzed and summarized. Then, the purification principle and process of vacuum distillation, arc melting, zone melting, and solid state electromigration are also discussed. Furthermore, the removal effect and function rule of metallic impurities and interstitial impurities in rare earth metals are outlined. Finally, the crucial issues in the development of high purity rare earth metals are put forward, and the development direction of high purity rare earth metals in future are pointed out on this basis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ning, Yuantao. "Alloying and Strengthening Effects of Rare Earths in Palladium". Platinum Metals Review 46, n.º 3 (1 de julho de 2002): 108–15. http://dx.doi.org/10.1595/003214002x463108115.

Texto completo da fonte
Resumo:
The effect of adding small amounts of rare earth elements to Palladium is to strengthen the Palladium. These strengthening effects are discussed here, based on known phase diagrams of Palladium-rare earths, Palladium-rare earth alloying behaviour and atomic (or ionic) size effects. The Solid solubilities of the rare earths in Palladium, transition temperatures of various intermediate phases and eutectic temperature in these systems are influenced by the ionic (or atomic) size of the rare earth elements. A parameter, Hs, the product of the relative difference in atomic weights and the relative difference in atomic radii, between a rare earth and Palladium is used to examine the Solid solution strengthening effects caused by dilute rare earths. The alloying behaviours of Palladium with the rare earths are very analogous, and could perhaps be used to predict alloying behaviour in some unexamined Palladium systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Matsuoka, Eiichi, Yo Tomiyama, Kotaro Iwasawa, Hitoshi Sugawara, Takahiro Sakurai e Hitoshi Ohta. "Magnetic anisotropy of tetragonal rare-earth compounds RRu2Al2B (R: rare-earth metals)". Journal of the Korean Physical Society 62, n.º 12 (junho de 2013): 1866–68. http://dx.doi.org/10.3938/jkps.62.1866.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Cherkasova, Tatiana, Elizaveta Cherkasova, Anastasia Tikhomirova, Alyona Bobrovni-kova e Irina Goryunova. "Rare and Rare-Earth Metals in Coal Processing Waste". E3S Web of Conferences 21 (2017): 02009. http://dx.doi.org/10.1051/e3sconf/20172102009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Firsov, Aleksandr V., Aleksandr V. Artamonov, Dar'ya N. Smirnova, Aleksandr P. Ilyin e Segreiy P. Kochetkov. "SORPTION OF RARE-EARTH METALS FROM NO EVAPORATED DIHYDRATE PHOSPHORIC ACID ON MACROPOROUS STRONGLY ACIDIC CATIONITE". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, n.º 4 (12 de julho de 2018): 50. http://dx.doi.org/10.6060/tcct.20165904.5321.

Texto completo da fonte
Resumo:
The kinetic and dynamic characteristics of the sorption of rare earths metals (REE) from no evaporated extration phosphoric acid (EPA) of dihydrate production on macroporous strongly acidic cation Rurolite C150 were investigated. The process of sorption of rare earth metals was established to take place in the external diffusion region.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Azhar, Muhamad, Solechan Solechan, Retno Saraswati, Putut Suharso, Suhartoyo Suhartoyo e Budi Ispriyarso. "The New Renewable Energy Consumption Policy of Rare Earth Metals to Build Indonesia's National Energy Security". E3S Web of Conferences 68 (2018): 03008. http://dx.doi.org/10.1051/e3sconf/20186803008.

Texto completo da fonte
Resumo:
This study aims to discuss the policy of using renewable energy in the form of rare metal eart as an effort to build national energy security. The research method used a legal research looking from various perspectives in social science. Law is seen as a space for the process of scientific study in order to seek truth. The use of relevant legal research wants to understand the law more thoroughly. In performing implementation analysis, using the method of Regulatory Impact Assessment (RIA) with focus on energy regulation. The results of the study show that: First, the policy of the Indonesian republic government regarding the use of new energy and renewable energy aims to prepare the carrying capacity of national energy security. This policy has not fully gone well. The policy is not supported by consistency in issuing derivative policies. Second, the use of new energy and renewable energy, especially rare earth metals as part of efforts to encourage national energy security in Indonesia is still very far from expectations. The use of rare eart metal is only around 0.7% of the use of new energy. Efforts to explore and exploit rare earth metals have not been carried out in a timely manner. Whereas the potential of rare earth metals is a strategic community and has the potential to encourage national energy security in Indonesia. Indonesia is projected to produce rare earth metals reaching 20% of the world's supply.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Liao, Chunfa, Lianghua Que, Zanhui Fu, Pan Deng, Alin Li, Xu Wang e Shumei Chen. "Research Status of Electrolytic Preparation of Rare Earth Metals and Alloys in Fluoride Molten Salt System: A Mini Review of China". Metals 14, n.º 4 (29 de março de 2024): 407. http://dx.doi.org/10.3390/met14040407.

Texto completo da fonte
Resumo:
China’s rare earth reserves and consumption are the highest in the world. Rare earth metals and alloys play a pivotal role in the domains of permanent magnetic materials, hydrogen storage materials, luminescent materials, abrasive materials, etc. The molten salt electrolysis process is the most widely used method for producing light rare earth metals and alloys in China, with distinct advantages such as continuous production and short process flow. This article focuses on the process technology of preparing rare earth metals and alloys by electrolyzing rare earth oxides in fluoride systems. This article summarizes the effects of process parameters such as cathode and anode structures, electrolysis temperature, and current density on the direct recovery and current efficiency of the preparation of light rare earth metals (La, Ce, Pr, Nd), RE–Mg (RE for rare earth) alloys, RE–Al alloys, RE–Ni alloys, and other rare earth alloys. Meanwhile, the disadvantages of the electrolytic cells and electrode configurations that are currently used in industrial production are discussed. Accordingly, the future prospects of molten salt electrolysis technology in the preparation of rare earth metals and alloys are clarified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Malinovskaya, Tatyana D., Roman A. Nefedov, Ouna B. Sambueva e Victor Sachkov. "Advanced of Rare Earth Fluorides Technology". Advanced Materials Research 1085 (fevereiro de 2015): 229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1085.229.

Texto completo da fonte
Resumo:
The thermochemical processes of synthesis and purification of rare earth metals fluorides through the transfer of fluoroammonium complexes were discussed. By differential thermal calorimetry the temperature maxima of rates of formation and decomposition of complex compounds were defined and the values of the apparent activation energy processes were determined. It is possible the use of fluoroammonium systems to develop the preparation of anhydrous fluorides of rare earth metals.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

DAS NEVES, Paulo Cesar Pereira, Darcson Vieira de Freitas e Lavinel G. IONESCU. "INERALOGICAL ASPECTS OF RARE EARTH ELEMENTS". SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 18, n.º 18 (20 de dezembro de 2010): 37–43. http://dx.doi.org/10.48141/sbjchem.v18.n18.2010.40_2010.pdf.

Texto completo da fonte
Resumo:
Rare earth elements or rare earth metals are group elements including the fifteen lanthanides (Z=57 to Z=71). Scandium (Z=21) and Yttrium (Z=39) are considered rare-earth by IUPAC since they tend to occur in the same ore deposits as the lanthanides and have similar chemical properties. The present article describes the mineralogical properties of the yttrium and the lanthanides. A total of two hundred and seventy-seven (277) minerals are known, the most common being monazites and bastnazites. Rare earth metals have many important industrial applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Klementyeva, Svetlana V., Taisiya S. Sukhikh, Pavel A. Abramov e Andrey I. Poddel’sky. "Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals". Molecules 28, n.º 4 (20 de fevereiro de 2023): 1994. http://dx.doi.org/10.3390/molecules28041994.

Texto completo da fonte
Resumo:
We report the synthesis and characterization of two types of new mixed-ligand rare earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three compounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate results in compounds 4–6. The crystal structures of complexes 1–6 were determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted β-diketiminates with sterically hindered redox-active ligands led to the very low coordination numbers of rare earths and strong distortion of the chelate ligands.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Cherednichenko, V. S., A. S. An’shakov, V. A. Serikov e V. A. Faleev. "Plasma Carbothermic Reduction of Rare-Earth Metals". Russian Metallurgy (Metally) 2018, n.º 6 (junho de 2018): 507–12. http://dx.doi.org/10.1134/s0036029518060071.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Liberman, David, e Andrew Zangwill. "Quadrupole resonances in the rare-earth metals". Physical Review A 39, n.º 1 (1 de janeiro de 1989): 415–16. http://dx.doi.org/10.1103/physreva.39.415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ogata, Y., H. Chudo, M. Ono, K. Harii, M. Matsuo, S. Maekawa e E. Saitoh. "Gyroscopic g factor of rare earth metals". Applied Physics Letters 110, n.º 7 (13 de fevereiro de 2017): 072409. http://dx.doi.org/10.1063/1.4976998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Bautista, Renato G. "The Growing Interest in Rare Earth Metals". JOM 40, n.º 5 (maio de 1988): 21. http://dx.doi.org/10.1007/bf03258905.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

F. Berk, N., J. J. Rush, T. J. Udovic e I. S. Anderson. "Anomalous hydrogen dynamics in rare earth metals". Journal of the Less Common Metals 172-174 (agosto de 1991): 496–508. http://dx.doi.org/10.1016/0022-5088(91)90170-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Blyth, R. I. R., S. S. Dhesi, P. A. Gravil, K. Newstead, R. Cosso, R. J. Cole, A. J. Patchett, T. Mitrelias, N. P. Prince e S. D. Barrett. "Surface electronic structure of rare earth metals". Journal of Alloys and Compounds 180, n.º 1-2 (março de 1992): 259–63. http://dx.doi.org/10.1016/0925-8388(92)90390-u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Borzone, Gabriella, Riccardo Raggio e Riccardo Ferro. "Thermochemistry and reactivity of rare earth metals". Physical Chemistry Chemical Physics 1, n.º 7 (1999): 1487–500. http://dx.doi.org/10.1039/a900312f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Gschneidner, K. A. "Physical properties of the rare earth metals". Bulletin of Alloy Phase Diagrams 11, n.º 3 (junho de 1990): 216–24. http://dx.doi.org/10.1007/bf03029283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Khorev, A. I. "Alloying titanium alloys with rare-earth metals". Russian Engineering Research 31, n.º 11 (novembro de 2011): 1087–94. http://dx.doi.org/10.3103/s1068798x11110104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Shinjoh, Hirohumi. "Rare earth metals for automotive exhaust catalysts". Journal of Alloys and Compounds 408-412 (fevereiro de 2006): 1061–64. http://dx.doi.org/10.1016/j.jallcom.2004.12.151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Sakurai, J., S. Nakatani, A. Adam e H. Fujiwara. "Magnetoresistance of RAgSn (R: rare-earth metals)". Journal of Magnetism and Magnetic Materials 108, n.º 1-3 (fevereiro de 1992): 143–44. http://dx.doi.org/10.1016/0304-8853(92)91386-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nieland, Anja, Jan-Hendrik Lamm, Andreas Mix, Beate Neumann, Hans-Georg Stammler e Norbert W. Mitzel. "Alkynyl Compounds of the Rare-earth Metals". Zeitschrift für anorganische und allgemeine Chemie 640, n.º 12-13 (13 de agosto de 2014): 2484–91. http://dx.doi.org/10.1002/zaac.201400158.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Dance, Amber. "Microbial miners take on rare-earth metals". Nature 623, n.º 7988 (20 de novembro de 2023): 876–78. http://dx.doi.org/10.1038/d41586-023-03611-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia