Literatura científica selecionada sobre o tema "Random time change of Brownian motion and symmetry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Random time change of Brownian motion and symmetry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Random time change of Brownian motion and symmetry"
Székely, B., e T. Szabados. "Strong approximation of continuous local martingales by simple random walks". Studia Scientiarum Mathematicarum Hungarica 41, n.º 1 (março de 2004): 101–26. http://dx.doi.org/10.1556/012.2004.41.1.6.
Texto completo da fonteLerche, Hans Rudolf, e Ilse Maahs. "Sequential Detection of Drift Change for Brownian Motion with Unknown Sign". gmj 15, n.º 4 (dezembro de 2008): 713–30. http://dx.doi.org/10.1515/gmj.2008.713.
Texto completo da fonteGwynne, Ewain, Jason Miller e Scott Sheffield. "The Tutte Embedding of the Poisson–Voronoi Tessellation of the Brownian Disk Converges to $$\sqrt{8/3}$$-Liouville Quantum Gravity". Communications in Mathematical Physics 374, n.º 2 (4 de novembro de 2019): 735–84. http://dx.doi.org/10.1007/s00220-019-03610-5.
Texto completo da fonteBAYLY, PHILIP V., e LAWRANCE N. VIRGIN. "EXPERIMENTAL EVIDENCE OF DIFFUSIVE DYNAMICS AND “RANDOM WALKING” IN A SIMPLE DETERMINISTIC MECHANICAL SYSTEM: THE SHAKEN PENDULUM". International Journal of Bifurcation and Chaos 02, n.º 04 (dezembro de 1992): 983–88. http://dx.doi.org/10.1142/s0218127492000586.
Texto completo da fonteHenderson, Vicky, e Rafał Wojakowski. "On the equivalence of floating- and fixed-strike Asian options". Journal of Applied Probability 39, n.º 2 (junho de 2002): 391–94. http://dx.doi.org/10.1239/jap/1025131434.
Texto completo da fonteHenderson, Vicky, e Rafał Wojakowski. "On the equivalence of floating- and fixed-strike Asian options". Journal of Applied Probability 39, n.º 02 (junho de 2002): 391–94. http://dx.doi.org/10.1017/s0021900200022592.
Texto completo da fonteCRIENS, DAVID. "A NOTE ON REAL-WORLD AND RISK-NEUTRAL DYNAMICS FOR HEATH–JARROW–MORTON FRAMEWORKS". International Journal of Theoretical and Applied Finance 23, n.º 03 (maio de 2020): 2050020. http://dx.doi.org/10.1142/s021902492050020x.
Texto completo da fonteFEDOTOV, SERGEI, e ABBY TAN. "LONG MEMORY STOCHASTIC VOLATILITY IN OPTION PRICING". International Journal of Theoretical and Applied Finance 08, n.º 03 (maio de 2005): 381–92. http://dx.doi.org/10.1142/s0219024905003013.
Texto completo da fonteKendall, Wilfrid S. "Symbolic computation and the diffusion of shapes of triads". Advances in Applied Probability 20, n.º 4 (dezembro de 1988): 775–97. http://dx.doi.org/10.2307/1427360.
Texto completo da fonteKendall, Wilfrid S. "Symbolic computation and the diffusion of shapes of triads". Advances in Applied Probability 20, n.º 04 (dezembro de 1988): 775–97. http://dx.doi.org/10.1017/s0001867800018371.
Texto completo da fonteTeses / dissertações sobre o assunto "Random time change of Brownian motion and symmetry"
Ouknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Texto completo da fonteThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Capítulos de livros sobre o assunto "Random time change of Brownian motion and symmetry"
Zinn-Justin, Jean. "From random walk to critical dynamics". In From Random Walks to Random Matrices, 421–50. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198787754.003.0022.
Texto completo da fonteZinn-Justin, Jean. "Stochastic differential equations: Langevin, Fokker–Planck (FP) equations". In Quantum Field Theory and Critical Phenomena, 831–56. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0034.
Texto completo da fonteOsorio, Roberto, e Lisa Borland. "Distributions of High-Frequency Stock-Market Observables". In Nonextensive Entropy. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195159769.003.0023.
Texto completo da fonte