Artigos de revistas sobre o tema "Rainfall Intensity Modeling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Rainfall Intensity Modeling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sadeghi, Hamed, Farshad Yazdani Bene Kohal, Mostafa Gholami, Pouya Alipanahi e Dongri Song. "Hydro-mechanical modeling of a vegetated slope subjected to rainfall". E3S Web of Conferences 382 (2023): 13004. http://dx.doi.org/10.1051/e3sconf/202338213004.
Texto completo da fonteWidowati, Adi Putri Anisa. "Hydraulic and Hydrologic Modeling of Steep Channel of Putih River, Magelang District, Central Java Province, Indonesia". Journal of the Civil Engineering Forum 3, n.º 3 (18 de setembro de 2017): 125. http://dx.doi.org/10.22146/jcef.26507.
Texto completo da fonteSumargo, Bagus, Dian Handayani, Alvi Pauziah Lubis, Irman Firmasyah e Ika Yuni Wulansari. "Detection of Factors Affecting Rainfall Intensity in Jakarta". Jurnal Ilmu Lingkungan 23, n.º 1 (8 de janeiro de 2024): 133–40. https://doi.org/10.14710/jil.23.1.133-140.
Texto completo da fonteNégyesi, Klaudia, e Eszter Dóra Nagy. "The connection between time of concentration and rainfall intensity based on rainfall-runoff modeling". Időjárás 128, n.º 4 (2024): 439–50. https://doi.org/10.28974/idojaras.2024.4.3.
Texto completo da fonteHermawan, Koko, Khori Sugianti, Antonina Martireni, Nugroho Aji Satrio e Yunarto. "Spatial and Temporal Analysis Prediction of Landslide Susceptibility Using Rainfall Infiltration and Grid-based Slope Stability Methods in West Bandung area of West Java-Indonesia". IOP Conference Series: Earth and Environmental Science 1173, n.º 1 (1 de maio de 2023): 012031. http://dx.doi.org/10.1088/1755-1315/1173/1/012031.
Texto completo da fonteDikko, H. G. "Modeling the Distribution of Rainfall Intensity using Quarterly Data". IOSR Journal of Mathematics 9, n.º 1 (2013): 11–16. http://dx.doi.org/10.9790/5728-0911116.
Texto completo da fonteDan'azumi. "Modeling the Distribution of Rainfall Intensity using Hourly Data". American Journal of Environmental Sciences 6, n.º 3 (1 de março de 2010): 238–43. http://dx.doi.org/10.3844/ajessp.2010.238.243.
Texto completo da fonteKumar, Pappu, Madhusudan Narayan e Mani Bhushan. "Rainfall Intensity Duration Frequency Curve Statistical Analysis and Modeling for Patna, Bihar". BOHR International Journal of Civil Engineering and Environmental Science 2, n.º 1 (2023): 65–73. http://dx.doi.org/10.54646/bicees.008.
Texto completo da fonteKumar, Pappu, Madhusudan Narayan e Mani Bhushan. "Rainfall Intensity Duration Frequency Curve Statistical Analysis and Modeling for Patna, Bihar". BOHR International Journal of Civil Engineering and Environmental Science 2, n.º 1 (2023): 65–73. http://dx.doi.org/10.54646/bijcees.008.
Texto completo da fonteKumar, Pappu, Madhusudan Narayan e Mani Bhushan. "Rainfall intensity duration frequency curve statistical analysis and modeling for Patna, Bihar". BOHR International Journal of Civil Engineering and Environmental Science 1, n.º 2 (2023): 66–75. http://dx.doi.org/10.54646/bijcees.2023.08.
Texto completo da fonteShao, W., T. A. Bogaard, M. Bakker e R. Greco. "Quantification of the influence of preferential flow on slope stability using a numerical modeling approach". Hydrology and Earth System Sciences Discussions 11, n.º 11 (26 de novembro de 2014): 13055–99. http://dx.doi.org/10.5194/hessd-11-13055-2014.
Texto completo da fonteYang, Ming-Jen, Da-Lin Zhang e Hsiao-Ling Huang. "A Modeling Study of Typhoon Nari (2001) at Landfall. Part I: Topographic Effects". Journal of the Atmospheric Sciences 65, n.º 10 (outubro de 2008): 3095–115. http://dx.doi.org/10.1175/2008jas2453.1.
Texto completo da fonteAbd Alelah, Zainb. "Modeling of Short Duration Rainfall Intensity Duration Frequency(SDR-IDF) Equation for Basrah City". University of Thi-Qar Journal for Engineering Sciences 7, n.º 2 (1 de dezembro de 2016): 56–68. http://dx.doi.org/10.31663/utjes.v7i2.62.
Texto completo da fonteYendra, Rado, Ari Pani Desvina, Rahmadeni Rahmadeni, Abdul Aziz Jemain, Wan Zawiah Wan Zin e Ahmad Fudholi. "Rainfall Storm Modeling of Neyman-Scott Rectangular Pulse (NSRP) using Rainfall Cell Intensity Distributions". Research Journal of Applied Sciences, Engineering and Technology 11, n.º 9 (25 de novembro de 2015): 969–74. http://dx.doi.org/10.19026/rjaset.11.2136.
Texto completo da fonteHakim, Arief Rachman, Rukun Santoso, Hasbi Yasin e Masithoh Yessi Rochayani. "MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY". MEDIA STATISTIKA 16, n.º 1 (20 de setembro de 2023): 59–66. http://dx.doi.org/10.14710/medstat.16.1.59-66.
Texto completo da fonteZhang, Zhen, Liangkai Qin, Guanbao Ye, Wei Wang e Jiafeng Zhang. "Physical Modeling and Intelligent Prediction for Instability of High Backfill Slope Moisturized under the Influence of Rainfall Disasters". Applied Sciences 13, n.º 7 (27 de março de 2023): 4218. http://dx.doi.org/10.3390/app13074218.
Texto completo da fonteDorneles, Viviane R., Rita de C. F. Damé, Claudia F. A. Teixeira-Gandra, Letícia B. Méllo, Mario A. A. Ramirez e Emanuele B. Manke. "Intensity-duration-frequency relationships of rainfall through the technique of disaggregation of daily rainfall". Revista Brasileira de Engenharia Agrícola e Ambiental 23, n.º 7 (julho de 2019): 506–10. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n7p506-510.
Texto completo da fonteGuideli, Leandro Canezin, André Lucas dos Reis Cuenca, Milena Arruda Silva e Larissa de Brum Passini. "Road crashes and field rainfall data: mathematical modeling for the Brazilian mountainous highway BR-376/PR". TRANSPORTES 29, n.º 4 (2 de dezembro de 2021): 2498. http://dx.doi.org/10.14295/transportes.v29i4.2498.
Texto completo da fonteHuang, J. C., S. J. Kao, M. L. Hsu e Y. A. Liu. "Influence of Specific Contributing Area algorithms on slope failure prediction in landslide modeling". Natural Hazards and Earth System Sciences 7, n.º 6 (6 de dezembro de 2007): 781–92. http://dx.doi.org/10.5194/nhess-7-781-2007.
Texto completo da fonteShi, Li Juan, Yang Cheng, Dong Xiu Ou e Xiao Hong Chen. "Modeling the Effects of Rainfall on Urban Freeway Free-Flow Speeds". Applied Mechanics and Materials 178-181 (maio de 2012): 2577–85. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2577.
Texto completo da fonteJamel, Asmaa Abdul Jabbar. "The Effect of Rainfall Intensity on Slope Stability: An Analytical Study using Numerical Modeling". Engineering, Technology & Applied Science Research 15, n.º 2 (3 de abril de 2025): 21203–7. https://doi.org/10.48084/etasr.10257.
Texto completo da fonteLindgren, Ville, Tero Niemi, Harri Koivusalo e Teemu Kokkonen. "Value of Spatially Distributed Rainfall Design Events—Creating Basin-Scale Stochastic Design Storm Ensembles". Water 15, n.º 17 (27 de agosto de 2023): 3066. http://dx.doi.org/10.3390/w15173066.
Texto completo da fonteLiu, Zhangwen, Yongxin Tian, Jinxian Qi, Zhiying Dang, Rensheng Chen, Chuntan Han e Yong Yang. "Rainfall Partitioning by Two Alpine Shrubs in the Qilian Mountains, Northwest China: Implications for Hydrological Modeling in Cold Regions". Forests 16, n.º 4 (10 de abril de 2025): 658. https://doi.org/10.3390/f16040658.
Texto completo da fonteLiu, Zheng, Fu-an Sun e Bin Zhou. "Modeling of the Marine atmosphere and its impact on Ka-band channels". MATEC Web of Conferences 355 (2022): 03046. http://dx.doi.org/10.1051/matecconf/202235503046.
Texto completo da fonteJuliastuti, Yuliastuti, Yureana Wijayanti, Mohamad Fajar e Martin Anda. "Hydraulic Modeling-Based Design of Retaining Wall Height for Flood Mitigation". Journal of Engineering and Sustainable Development 28, n.º 6 (1 de novembro de 2024): 710–16. http://dx.doi.org/10.31272/jeasd.28.6.3.
Texto completo da fonteKim, Sangdan, e M. Levent Kavvas. "Stochastic Point Rainfall Modeling for Correlated Rain Cell Intensity and Duration". Journal of Hydrologic Engineering 11, n.º 1 (janeiro de 2006): 29–36. http://dx.doi.org/10.1061/(asce)1084-0699(2006)11:1(29).
Texto completo da fonteHussein, Mohammad H. "A sheet erodibility parameter for water erosion modeling in regions with low intensity rain". Hydrology Research 44, n.º 6 (16 de janeiro de 2013): 1013–21. http://dx.doi.org/10.2166/nh.2013.029.
Texto completo da fonteGuo, Bin, Xiangjun Pei, Min Xu e Tiantao Li. "Analyzing Rainfall Threshold for Shallow Landslides Using Physically Based Modeling in Rasuwa District, Nepal". Water 14, n.º 24 (13 de dezembro de 2022): 4074. http://dx.doi.org/10.3390/w14244074.
Texto completo da fonteWei, Zhen Lei, Yue Quan Shang, Qiu Hua Liang e Xi Lin Xia. "A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence". Natural Hazards and Earth System Sciences 24, n.º 10 (1 de outubro de 2024): 3357–79. http://dx.doi.org/10.5194/nhess-24-3357-2024.
Texto completo da fonteChen, G. F., D. Y. Qin, R. Ye, Y. X. Guo e H. Wang. "A new method of rainfall temporal downscaling: a case study on sanmenxia station in the Yellow River Basin". Hydrology and Earth System Sciences Discussions 8, n.º 2 (3 de março de 2011): 2323–44. http://dx.doi.org/10.5194/hessd-8-2323-2011.
Texto completo da fonteKumar, V. Rajesh, S. Guganesh, D. Hussain Babu e P. Kumaresan. "Flood Risk Assessment for an Irrigation Project in Odissa, India". Indian Journal Of Science And Technology 17, n.º 13 (25 de março de 2024): 1304–14. http://dx.doi.org/10.17485/ijst/v17i13.2588.
Texto completo da fonteNguyen, Phu Minh Vuong, Aleksander Wrana, Sylwester Rajwa, Zenon Różański e Robert Frączek. "Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall—A Case Study of Janina Mine, Poland". Energies 15, n.º 21 (7 de novembro de 2022): 8311. http://dx.doi.org/10.3390/en15218311.
Texto completo da fonteLee, Kang, Joo, Kim, Kim e Lee. "Hydrological Modeling Approach Using Radar-Rainfall Ensemble and Multi-Runoff-Model Blending Technique". Water 11, n.º 4 (23 de abril de 2019): 850. http://dx.doi.org/10.3390/w11040850.
Texto completo da fonteMendes, Thiago Augusto, Roberto Dutra Alves, Gilson de Farias Neves Gitirana, Sávio Aparecido dos Santos Pereira, Juan Félix Rodriguez Rebolledo e Marta Pereira da Luz. "Evaluation of Rainfall Interception by Vegetation Using a Rainfall Simulator". Sustainability 13, n.º 9 (1 de maio de 2021): 5082. http://dx.doi.org/10.3390/su13095082.
Texto completo da fonteTan, Jinqiang, Hongqing Song, Hailong Zhang, Qinghui Zhu, Yi Xing e Jie Zhang. "Numerical Investigation on Infiltration and Runoff in Unsaturated Soils with Unsteady Rainfall Intensity". Water 10, n.º 7 (11 de julho de 2018): 914. http://dx.doi.org/10.3390/w10070914.
Texto completo da fonteSetyorini, Elisabeth Yeyen, e Endah R. M. Putri. "RAINFALL MODELLING IN EAST JAVA USING A MODIFIED ORNSTEIN-UHLENBECK MODEL". Jurnal Matematika UNAND 14, n.º 1 (31 de janeiro de 2025): 46. https://doi.org/10.25077/jmua.14.1.46-61.2025.
Texto completo da fonteZhan, Tony L. T., He Li, G. W. Jia, Y. M. Chen e D. G. Fredlund. "Physical and numerical study of lateral diversion by three-layer inclined capillary barrier covers under humid climatic conditions". Canadian Geotechnical Journal 51, n.º 12 (dezembro de 2014): 1438–48. http://dx.doi.org/10.1139/cgj-2013-0449.
Texto completo da fontePeres, D. J., e A. Cancelliere. "Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach". Hydrology and Earth System Sciences 18, n.º 12 (8 de dezembro de 2014): 4913–31. http://dx.doi.org/10.5194/hess-18-4913-2014.
Texto completo da fonteRaut, Jayant Raut, Prashant Pande, Avinash Vasudeo, Rajesh Bhagat, Boskey Bahoria e Atul Kurjekar. "Experimental Tests of Slope Failure due to Rainfall using Physical Slope Modeling". Journal of Advanced Research in Applied Mechanics 126, n.º 1 (30 de outubro de 2024): 49–59. http://dx.doi.org/10.37934/aram.126.1.4959.
Texto completo da fonteZong, Jingmei, Changjun Zhang, Leifei Liu e Lulu Liu. "Modeling Rainfall Impact on Slope Stability: Computational Insights into Displacement and Stress Dynamics". Water 16, n.º 4 (11 de fevereiro de 2024): 554. http://dx.doi.org/10.3390/w16040554.
Texto completo da fonteIliopoulou, Theano, Nikolaos Malamos e Demetris Koutsoyiannis. "Regional Ombrian Curves: Design Rainfall Estimation for a Spatially Diverse Rainfall Regime". Hydrology 9, n.º 5 (23 de abril de 2022): 67. http://dx.doi.org/10.3390/hydrology9050067.
Texto completo da fonteDzupire, Nelson Christopher, Philip Ngare e Leo Odongo. "A Poisson-Gamma Model for Zero Inflated Rainfall Data". Journal of Probability and Statistics 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/1012647.
Texto completo da fonteFuentes, Montserrat, Brian Reich e Gyuwon Lee. "Spatial–temporal mesoscale modeling of rainfall intensity using gage and radar data". Annals of Applied Statistics 2, n.º 4 (dezembro de 2008): 1148–69. http://dx.doi.org/10.1214/08-aoas166.
Texto completo da fonteDilama Shamsudeen, Shamla, e Adarsh Sankaran. "Landslide hazard mapping of Wayanad District of Kerala, India, incorporating copula-based estimation of joint probability of rainfall". Proceedings of IAHS 387 (18 de novembro de 2024): 79–86. http://dx.doi.org/10.5194/piahs-387-79-2024.
Texto completo da fonteDorneles, Viviane R., Rita de C. F. Damé, Claudia F. A. Teixeira-Gandra, Patrick M. Veber, Gustavo B. Klumb e Mario A. A. Ramirez. "Modeling of probability in obtaining intensity-duration-frequency relationships of rainfall occurrence for Pelotas, RS, Brazil". Revista Brasileira de Engenharia Agrícola e Ambiental 23, n.º 7 (julho de 2019): 499–505. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n7p499-505.
Texto completo da fonteStarzec, Mariusz, Sabina Kordana-Obuch e Daniel Słyś. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area". Sustainability 15, n.º 10 (19 de maio de 2023): 8316. http://dx.doi.org/10.3390/su15108316.
Texto completo da fonteHu, Tengfei, Jingqiao Mao, Peipei Zhang, Diandian Xu, Weiyu Chen e Huichao Dai. "Hydrological utilization of satellite precipitation estimates in a data-scarce lake region". Water Supply 18, n.º 5 (13 de novembro de 2017): 1581–89. http://dx.doi.org/10.2166/ws.2017.223.
Texto completo da fonteSzeląg, Bartosz, Adam Kiczko e Lidia Dąbek. "Stormwater Reservoir Sizing in Respect of Uncertainty". Water 11, n.º 2 (14 de fevereiro de 2019): 321. http://dx.doi.org/10.3390/w11020321.
Texto completo da fonteZinevich, A., H. Messer e P. Alpert. "Prediction of rainfall intensity measurement errors using commercial microwave communication links". Atmospheric Measurement Techniques 3, n.º 5 (12 de outubro de 2010): 1385–402. http://dx.doi.org/10.5194/amt-3-1385-2010.
Texto completo da fonteEkwueme, Chimeme, Ify Nwaogazie, Chiedozie Ikebude, Godwin Amuchi, Jonathan Irokwe e Diaa Hourani. "Modeling Rainfall Intensity-Duration-Frequency (IDF) and Establishing Climate Change Existence in Umuahia - Nigeria Using Non-Stationary Approach". Hydrology 13, n.º 1 (7 de março de 2025): 83–89. https://doi.org/10.11648/j.hyd.20251301.19.
Texto completo da fonte