Siga este link para ver outros tipos de publicações sobre o tema: Radio frequency.

Artigos de revistas sobre o tema "Radio frequency"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Radio frequency".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

NECHIBVUTE, Action, Albert CHAWANDA, Nicholas TARUVINGA e Pearson LUHANGA. "Radio Frequency Energy Harvesting Sources". Acta Electrotechnica et Informatica 17, n.º 4 (1 de dezembro de 2017): 19–27. http://dx.doi.org/10.15546/aeei-2017-0030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jayati, Ari Endang, Wahyu Minarti e Sri Heranurweni. "Analisa Teknis Penetapan Kanal Frekuensi Radio Untuk Lembaga Penyiaran Radio Komunitas Wilayah Kabupaten Batang". Jurnal ELTIKOM 5, n.º 2 (10 de setembro de 2021): 73–80. http://dx.doi.org/10.31961/eltikom.v5i2.361.

Texto completo da fonte
Resumo:
The radio frequency spectrum constitutes a limited and strategic natural resource with high economic value, so it must be managed effectively and efficiently to obtain optimal benefits by observing national and international legal principles. Radio Community Broadcasting Institution uses limited frequency allocation in three channels, namely, in the frequency channels 202 (107.7 MHz), 203 (107.8 MHz), and 204 (107.9 MHz), with limited transmit power and area coverage. The problem in this research is the frequency overlap with other community radios in an area. The issue raised is whether it is possible to establish a new community radio in the Batang Regency area by paying attention to existing radios that have licenses in districts/cities that are in the area directly adjacent to Batang Regency by considering the limited allocation of radio frequency channels community, without the occurrence of radio frequency interference with other community radios. The purpose of this research is to solve these problems. It is necessary to have a policy in determining radio frequency users to get good quality radio broadcast reception. The method used is to analyze the frequency determination technique based on the interference analysis on other community broadcasters. By using the Radio Mobile Software for frequency repetition simulation, in this research, the results show that Batang FM Community Radio does not allow to get frequency channels for community radio operations. After all, it interferes with the Service Area of ​​Soneta FM Radio in Pekalongan City because it does not meet the requirements for determining the frequency channel = Eu> NF, namely the Nuisance Field (NF) value of 109.7 dB is greater than the Minimum Usable Field strength (Eu) of 66 dB. In comparison, Limpung FM Radio gets radio frequency on channel 203 (frequency 107.8 MHz) because it meets the requirements for determining the frequency channel = Eu> NF, namely the Minimum Usable Field strength (Eu) 66 dB greater than the Nuisance Field (NF) of 55.7 dB.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sackenheim, Maureen McDaniel. "Radio Frequency Ablation". Journal of Diagnostic Medical Sonography 19, n.º 2 (março de 2003): 88–92. http://dx.doi.org/10.1177/8756479303251097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Dondelinger, Robert M. "Radio Frequency Identification". Biomedical Instrumentation & Technology 44, n.º 1 (1 de janeiro de 2010): 44–47. http://dx.doi.org/10.2345/0899-8205-44.1.44.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wyld, David C. "Radio Frequency Identification". Cornell Hospitality Quarterly 49, n.º 2 (maio de 2008): 134–44. http://dx.doi.org/10.1177/1938965508316147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Scheck, Anne. "Radio Frequency Identification". Emergency Medicine News 28, n.º 3 (março de 2006): 34–35. http://dx.doi.org/10.1097/01.eem.0000292061.54727.06.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ekers, R. D., e J. F. Bell. "Radio Frequency Interference". Symposium - International Astronomical Union 199 (2002): 498–505. http://dx.doi.org/10.1017/s0074180900169669.

Texto completo da fonte
Resumo:
We describe the nature of the interference challenges facing radio astronomy in the next decade. These challenges will not be solved by regulation only, negotiation and mitigation will become vital. There is no silver bullet for mitigating against interference. A successful mitigation approach is most likely to be a hierarchical or progressive approach throughout the telescope and signal conditioning and processing systems. We summarise some of the approaches, including adaptive systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Westra, Bonnie L. "Radio Frequency Identification". AJN, American Journal of Nursing 109, n.º 3 (março de 2009): 34–36. http://dx.doi.org/10.1097/01.naj.0000346925.67498.a4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Rajaraman, V. "Radio frequency identification". Resonance 22, n.º 6 (junho de 2017): 549–75. http://dx.doi.org/10.1007/s12045-017-0498-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

., Manishkumar R. Solanki. "RADIO FREQUENCY IDENTIFICATION". International Journal of Research in Engineering and Technology 06, n.º 01 (25 de janeiro de 2017): 129–33. http://dx.doi.org/10.15623/ijret.2017.0601024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Rao, Raghavendra. "RADIO FREQUENCY IDENTIFICATION". International Journal of Innovative Research in Advanced Engineering 09, n.º 12 (31 de dezembro de 2022): 489–92. http://dx.doi.org/10.26562/ijirae.2022.v0912.05.

Texto completo da fonte
Resumo:
Radio-frequency identification (RFID) is a technology that uses communication via electromagnetic waves to exchange data between a terminal and an electronic tag attached to an object, for the purpose of identification and tracking. Some tags can be read from several meters away and beyond the line of sight of the reader. Radio-frequency identification involves interrogators (also known as readers), and tags (also known as labels). Most RFID tags contain at least two parts. One is an integrated circuit for storing and processing information, modulating and demodulating a radio-frequency (RF) signal, and other specialized functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ayun, Moshe Ben, Arye Schwarzbaum, Seva Rosenberg, Monika Pinchas e Shmuel Sternklar. "Photonic radio frequency phase-shift amplification by radio frequency interferometry". Optics Letters 40, n.º 21 (19 de outubro de 2015): 4863. http://dx.doi.org/10.1364/ol.40.004863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Mericli, Benjamin S., Ajay Ogirala, Peter J. Hawrylak e Marlin H. Mickle. "A Passive Radio Frequency Amplifier for Radio Frequency Identification Tags". Journal of Low Power Electronics 7, n.º 3 (1 de agosto de 2011): 453–58. http://dx.doi.org/10.1166/jolpe.2011.1139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Piccardo, Marco, Michele Tamagnone, Benedikt Schwarz, Paul Chevalier, Noah A. Rubin, Yongrui Wang, Christine A. Wang et al. "Radio frequency transmitter based on a laser frequency comb". Proceedings of the National Academy of Sciences 116, n.º 19 (24 de abril de 2019): 9181–85. http://dx.doi.org/10.1073/pnas.1903534116.

Texto completo da fonte
Resumo:
Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase, there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here, we give a proof of concept of a compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive a dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region, and injection lock the laser. These results pave the way for applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Dallacasa, Daniele. "High Frequency Peakers". Publications of the Astronomical Society of Australia 20, n.º 1 (2003): 79–84. http://dx.doi.org/10.1071/as03005.

Texto completo da fonte
Resumo:
AbstractThere is quite a clear anticorrelation between the intrinsic peak frequency and the overall radio source size in compact steep spectrum (CSS) and gigahertz peaked spectrum (GPS) radio sources. This feature is interpreted in terms of synchrotron self-absorption (although free–free absorption may play a role as well) of the radiation emitted by a small radio source which is growing within the inner region of the host galaxy. This leads to the hypothesis that these objects are young and that the radio source is still developing/expanding within the host galaxy itself.Very young radio sources must have the peak in their radio spectra occurring above a few tens of gigahertz, and for this reason they are termed high frequency peakers (HFPs). These newly born radio sources must be very rare given that they spend very little time in this stage. Ho = 100 km s−1 Mpc−1 and qo = 0.5 are used throughout this paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Keenan, Jan. "Radio frequency catheter ablation". Nursing Standard 9, n.º 10 (30 de novembro de 1994): 50–51. http://dx.doi.org/10.7748/ns.9.10.50.s50.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Truszkiewicz, Adrian, David Aebisher, Zuzanna Bober, Łukasz Ożóg e Dorota Bartusik-Aebisher. "Radio Frequency MRI coils". European Journal of Clinical and Experimental Medicine 18, n.º 1 (2020): 24–27. http://dx.doi.org/10.15584/ejcem.2020.1.5.

Texto completo da fonte
Resumo:
Introduction. Magnetic Resonance Imaging (MRI) coils technology is a powerful improvement for clinical diagnostics. This includes opportunities for mathematical and physical research into coil design. Aim. Here we present the method applied to MRI coil array designs. Material and methods. Analysis of literature and self-research. Results. The coils that emit the radiofrequency pulses are designed similarly. As much as possible, they deliver the same strength of radiofrequency to all voxels within their imaging volume. Surface coils on the other hand are usually not embedded in cylindrical surfaces relatively close to the surface of the body. Conclusion. The presented here results relates to the art of magnetic resonance imaging (MRI) and RF coils design. It finds particular application of RF coils in conjunction with bore type MRI scanners.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

WANG, XIAOBIN. "RADIO FREQUENCY MAGNETIZATION NONVOLATILITY". SPIN 02, n.º 03 (setembro de 2012): 1240009. http://dx.doi.org/10.1142/s2010324712400097.

Texto completo da fonte
Resumo:
Long time magnetization thermal switching under small amplitude high frequency excitation is analyzed. Approaches based upon conventional time-dependent energy barrier are not sufficient to describe magnetization nonvolatility under GHz excitations. Methods based upon large angle nonlinear magnetization dynamics are developed for both coherent and noncoherent magnetization switching. This dynamic approach is not only important for fundamental understanding of magnetization dynamics under combined radio frequency excitations and thermal fluctuations, but also critical for practical design of emerging spintronic devices. When applied to spin torque random access memory read operations, as sensing current duration reaches nanosecond, dynamic approach gives a switching probability estimation orders of magnitude different from that obtained from conventional time-dependent energy barrier approach.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Wilson, J. F. "Computer radio-frequency interference". Electronics and Power 31, n.º 2 (1985): 112. http://dx.doi.org/10.1049/ep.1985.0092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kaye, A., J. Jacquinot, P. Lallia e T. Wade. "Radio-Frequency Heating System". Fusion Technology 11, n.º 1 (janeiro de 1987): 203–34. http://dx.doi.org/10.13182/fst11-203-234.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Schmidt, D. R., C. S. Yung e A. N. Cleland. "Nanoscale radio-frequency thermometry". Applied Physics Letters 83, n.º 5 (4 de agosto de 2003): 1002–4. http://dx.doi.org/10.1063/1.1597983.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Jones, Alex K., Swapna Dontharaju, Shenchih Tung, Leo Mats, Peter J. Hawrylak, Raymond R. Hoare, James T. Cain e Marlin H. Mickle. "Radio frequency identification prototyping". ACM Transactions on Design Automation of Electronic Systems 13, n.º 2 (2 de abril de 2008): 1–22. http://dx.doi.org/10.1145/1344418.1344425.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Rundh, Bo. "Radio frequency identification (RFID)". Marketing Intelligence & Planning 26, n.º 1 (8 de fevereiro de 2008): 97–114. http://dx.doi.org/10.1108/02634500810847174.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Roome, S. J. "Digital radio frequency memory". Electronics & Communications Engineering Journal 2, n.º 4 (1990): 147. http://dx.doi.org/10.1049/ecej:19900035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Padamsee, Hasan S. "Superconducting Radio-Frequency Cavities". Annual Review of Nuclear and Particle Science 64, n.º 1 (19 de outubro de 2014): 175–96. http://dx.doi.org/10.1146/annurev-nucl-102313-025612.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hingley, Martin, Susan Taylor e Charlotte Ellis. "Radio frequency identification tagging". International Journal of Retail & Distribution Management 35, n.º 10 (11 de setembro de 2007): 803–20. http://dx.doi.org/10.1108/09590550710820685.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Widmann, W. D., W. W. L. Glenn, L. Eisenberg e A. Mauro. "RADIO-FREQUENCY CARDIAC PACEMAKER*". Annals of the New York Academy of Sciences 111, n.º 3 (15 de dezembro de 2006): 992–1006. http://dx.doi.org/10.1111/j.1749-6632.1964.tb53169.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Kuzikov, S. V., A. V. Savilov e A. A. Vikharev. "Flying radio frequency undulator". Applied Physics Letters 105, n.º 3 (21 de julho de 2014): 033504. http://dx.doi.org/10.1063/1.4890586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Margaryan, A., R. Carlini, R. Ent, N. Grigoryan, K. Gyunashyan, O. Hashimoto, K. Hovater et al. "Radio frequency picosecond phototube". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566, n.º 2 (outubro de 2006): 321–26. http://dx.doi.org/10.1016/j.nima.2006.07.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Tucker, Robert D., Chester E. Sievert, J. A. Vennes e Stephen E. Silvis. "Endoscopic radio frequency electrosurgery". Gastrointestinal Endoscopy 36, n.º 4 (julho de 1990): 412–13. http://dx.doi.org/10.1016/s0016-5107(90)71082-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Melski, Adam, Lars Thoroe e Matthias Schumann. "RFID – Radio Frequency Identification". Informatik-Spektrum 31, n.º 5 (5 de agosto de 2008): 469–73. http://dx.doi.org/10.1007/s00287-008-0267-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Roberts, C. M. "Radio frequency identification (RFID)". Computers & Security 25, n.º 1 (fevereiro de 2006): 18–26. http://dx.doi.org/10.1016/j.cose.2005.12.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Zeibig, Stefan. "Radio Frequency Identification (RFID)". Controlling 18, n.º 1 (2006): 51–52. http://dx.doi.org/10.15358/0935-0381-2006-1-51.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ivannikov, V. I., Yu D. Chernousov e I. V. Shebolaev. "Radio-frequency power compressor". Technical Physics 44, n.º 1 (janeiro de 1999): 108–9. http://dx.doi.org/10.1134/1.1259261.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Dobson, Tatyana, e Elle Todd. "Radio frequency identification technology". Computer Law & Security Review 22, n.º 4 (janeiro de 2006): 313–15. http://dx.doi.org/10.1016/j.clsr.2006.05.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Wiltshire, M. C. K. "Radio frequency (RF) metamaterials". physica status solidi (b) 244, n.º 4 (abril de 2007): 1227–36. http://dx.doi.org/10.1002/pssb.200674511.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Deng, Shouyun, Zhitao Huang, Xiang Wang e Guangquan Huang. "Radio Frequency Fingerprint Extraction Based on Multidimension Permutation Entropy". International Journal of Antennas and Propagation 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/1538728.

Texto completo da fonte
Resumo:
Radio frequency fingerprint (RF fingerprint) extraction is a technology that can identify the unique radio transmitter at the physical level, using only external feature measurements to match the feature library. RF fingerprint is the reflection of differences between hardware components of transmitters, and it contains rich nonlinear characteristics of internal components within transmitter. RF fingerprint technique has been widely applied to enhance the security of radio frequency communication. In this paper, we propose a new RF fingerprint method based on multidimension permutation entropy. We analyze the generation mechanism of RF fingerprint according to physical structure of radio transmitter. A signal acquisition system is designed to capture the signals to evaluate our method, where signals are generated from the same three Anykey AKDS700 radios. The proposed method can achieve higher classification accuracy than that of the other two steady-state methods, and its performance under different SNR is evaluated from experimental data. The results demonstrate the effectiveness of the proposal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Franklin, R. N. "The dual frequency radio-frequency sheath revisited". Journal of Physics D: Applied Physics 36, n.º 21 (15 de outubro de 2003): 2660–61. http://dx.doi.org/10.1088/0022-3727/36/21/010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Rani, Supriya. "Software Defined Radio in Radio Frequency Identification Applications". International Journal for Research in Applied Science and Engineering Technology 9, n.º VII (20 de julho de 2021): 1887–92. http://dx.doi.org/10.22214/ijraset.2021.36778.

Texto completo da fonte
Resumo:
RFID is an important aspect of today's age because it boosts efficiency and convenience. It is used for a lot of applications that prevent thefts of automobiles and merchandise. In current times there have been continuous transitions from analog to digital systems where software is being used to define the waveforms and analog signal processing is being replaced with digital signal processing. In this paper, we have done a thorough literature survey and understood the working of how software-defined radio is implemented in radio frequency identification for a better BER performance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Fridman, P. "Radio frequency interference rejection in radio astronomy receivers". Astronomical & Astrophysical Transactions 19, n.º 3-4 (dezembro de 2000): 625–45. http://dx.doi.org/10.1080/10556790008238609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Krupar, Vratislav, Oksana Kruparova, Adam Szabo, Lynn B. Wilson, Frantisek Nemec, Ondrej Santolik, Marc Pulupa, Karine Issautier, Stuart D. Bale e Milan Maksimovic. "Radial Variations in Solar Type III Radio Bursts". Astrophysical Journal Letters 967, n.º 2 (28 de maio de 2024): L32. http://dx.doi.org/10.3847/2041-8213/ad4be7.

Texto completo da fonte
Resumo:
Abstract Type III radio bursts are generated by electron beams accelerated at reconnection sites in the corona. This study, utilizing data from the Parker Solar Probe’s first 17 encounters, closely examines these bursts down to 13 solar radii. A focal point of our analysis is the near-radial alignment (within 5°) of the Parker Solar Probe, STEREO-A, and Wind spacecraft relative to the Sun. This alignment, facilitating simultaneous observations of 52 and 27 bursts by STEREO-A and Wind respectively, allows for a detailed differentiation of radial and longitudinal burst variations. Our observations reveal no significant radial variations in electron beam speeds, radio fluxes, or exponential decay times for events below 50 solar radii. In contrast, closer to the Sun we noted a decrease in beam speeds and radio fluxes. This suggests potential effects of radio beaming or alterations in radio source sizes in this region. Importantly, our results underscore the necessity of considering spacecraft distance in multispacecraft observations for accurate radio burst analysis. A critical threshold of 50 solar radii emerges, beyond which beaming effects and changes in beam speeds and radio fluxes become significant. Furthermore, the consistent decay times across varying radial distances point toward a stable trend extending from 13 solar radii into the inner heliosphere. Our statistical results provide valuable insights into the propagation mechanisms of type III radio bursts, particularly highlighting the role of scattering near the radio source when the frequency aligns with the local electron plasma frequency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Kim, Yong-Jin, e Chang-Won Jung. "Design of mobile Radio Frequency Identification (m-RFID) antenna". Journal of the Korea Academia-Industrial cooperation Society 10, n.º 12 (31 de dezembro de 2009): 3608–13. http://dx.doi.org/10.5762/kais.2009.10.12.3608.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Ando, A., A. Komuro, T. Matsuno, K. Tsumori e Y. Takeiri. "Radio frequency ion source operated with field effect transistor based radio frequency system". Review of Scientific Instruments 81, n.º 2 (fevereiro de 2010): 02B107. http://dx.doi.org/10.1063/1.3279306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ko, Chien-Ho. "Accessibility of Radio Frequency Identification Technology in Facilities Maintenance". Journal of Engineering, Project, and Production Management 7, n.º 1 (31 de janeiro de 2017): 45–53. http://dx.doi.org/10.32738/jeppm.201701.0006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Пензин, Максим, Maksim Penzin, Николай Ильин e Nikolay Ilyin. "Modeling of Doppler frequency shift in multipath radio channels". Solar-Terrestrial Physics 2, n.º 2 (10 de agosto de 2016): 66–76. http://dx.doi.org/10.12737/21000.

Texto completo da fonte
Resumo:
We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase variation in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of variation in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

K.R., Sireesha, Chittoria R.K., Preethitha B., Elankumar S., Vinayak C., Kumaran M.S., Sudhanva H.K., Aggarwal A. e Saurabh G. "Application of Radio Frequency in the Management of Neurofibroma". Indian Journal of Medical and Health Sciences 5, n.º 1 (15 de junho de 2018): 45–48. http://dx.doi.org/10.21088/ijmhs.2347.9981.5118.8.

Texto completo da fonte
Resumo:
The usual practice of making skin incisions by a scalpel leads to more bleeding and time spent on achieving hemostasis. An alternative to this is to use electromagnetic radiation of high frequency in the form of radiofrequency to make skin inciosns that are more precise, accurate, associated with less bleeding and in turn less time consuming giving more defined result. Neurofibromatosis type 1 is associated with multiple swellings all over the body with surgical management required for aesthetic reasons or for symptomatic swellings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Gans, T., J. Schulze, D. O’Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe e M. M. Turner. "Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas". Applied Physics Letters 89, n.º 26 (25 de dezembro de 2006): 261502. http://dx.doi.org/10.1063/1.2425044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kang, Jusung, Younghak Shin, Hyunku Lee, Jintae Park e Heungno Lee. "Radio Frequency Fingerprinting for Frequency Hopping Emitter Identification". Applied Sciences 11, n.º 22 (16 de novembro de 2021): 10812. http://dx.doi.org/10.3390/app112210812.

Texto completo da fonte
Resumo:
In a frequency hopping spread spectrum (FHSS) network, the hopping pattern plays an important role in user authentication at the physical layer. However, recently, it has been possible to trace the hopping pattern through a blind estimation method for frequency hopping (FH) signals. If the hopping pattern can be reproduced, the attacker can imitate the FH signal and send the fake data to the FHSS system. To prevent this situation, a non-replicable authentication system that targets the physical layer of an FHSS network is required. In this study, a radio frequency fingerprinting-based emitter identification method targeting FH signals was proposed. A signal fingerprint (SF) was extracted and transformed into a spectrogram representing the time–frequency behavior of the SF. This spectrogram was trained on a deep inception network-based classifier, and an ensemble approach utilizing the multimodality of the SFs was applied. A detection algorithm was applied to the output vectors of the ensemble classifier for attacker detection. The results showed that the SF spectrogram can be effectively utilized to identify the emitter with 97% accuracy, and the output vectors of the classifier can be effectively utilized to detect the attacker with an area under the receiver operating characteristic curve of 0.99.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Yuan, Yingjun, Zhitao Huang e Xiang Wang. "Detection of frequency‐hopping radio frequency‐switch transients". Electronics Letters 50, n.º 13 (junho de 2014): 956–57. http://dx.doi.org/10.1049/el.2013.3534.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Alshaykh, Mohammed S., Jason D. McKinney e Andrew M. Weiner. "Radio-Frequency Signal Processing Using Optical Frequency Combs". IEEE Photonics Technology Letters 31, n.º 23 (1 de dezembro de 2019): 1874–77. http://dx.doi.org/10.1109/lpt.2019.2946542.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia