Literatura científica selecionada sobre o tema "Radio astronomy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Radio astronomy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Radio astronomy"
Baldwin, J. E., P. G. Mezger, A. Barrett, A. Baudry, R. Booth, D. Jauncey, V. Kapahi et al. "40. Radio Astronomy (Radio Astronomie)". Transactions of the International Astronomical Union 20, n.º 01 (1988): 539–66. http://dx.doi.org/10.1017/s0251107x00007379.
Texto completo da fonteBowler, Sue. "Nigeria's first radio astronomer". Astronomy & Geophysics 61, n.º 5 (1 de outubro de 2020): 5.28–5.30. http://dx.doi.org/10.1093/astrogeo/ataa072.
Texto completo da fonteMatejka, A. "Radio Astronomy". Minnesota review 2012, n.º 78 (1 de junho de 2012): 3. http://dx.doi.org/10.1215/00265667-1550437.
Texto completo da fonteBradfield, Philip. "X-ceedingly good". Physics World 37, n.º 5 (1 de maio de 2024): 29iii. http://dx.doi.org/10.1088/2058-7058/37/05/26.
Texto completo da fonteFrater, R. H., W. M. Goss e H. W. Wendt. "Bernard Yarnton Mills 1920–2011". Historical Records of Australian Science 24, n.º 2 (2013): 294. http://dx.doi.org/10.1071/hr13002.
Texto completo da fonteCohen, R. J. "Radio Astronomy and the Radio Regulations". Symposium - International Astronomical Union 196 (2001): 220–28. http://dx.doi.org/10.1017/s0074180900164137.
Texto completo da fonteFrater, R. H., W. M. Goss e H. W. Wendt. "Bernard Yarnton Mills AC FAA. 8 August 1920 — 25 April 2011". Biographical Memoirs of Fellows of the Royal Society 59 (janeiro de 2013): 215–39. http://dx.doi.org/10.1098/rsbm.2013.0015.
Texto completo da fonteMitton, Simon. "Book Review: Radio Astronomy Reprints: Classics in Radio Astronomy". Journal for the History of Astronomy 17, n.º 3 (agosto de 1986): 212. http://dx.doi.org/10.1177/002182868601700315.
Texto completo da fonteSwarup, Govind. "The Journey of a Radio Astronomer: Growth of Radio Astronomy in India". Annual Review of Astronomy and Astrophysics 59, n.º 1 (8 de setembro de 2021): 1–19. http://dx.doi.org/10.1146/annurev-astro-090120-014030.
Texto completo da fonteKellermann, K. I., J. Baldwin, J. G. Abies, N. Broten, G. Dulk, B. Hoglund, N. Kardashev et al. "40. Radio Astronomy". Transactions of the International Astronomical Union 19, n.º 1 (1985): 549–80. http://dx.doi.org/10.1017/s0251107x00006623.
Texto completo da fonteTeses / dissertações sobre o assunto "Radio astronomy"
Van, Tonder Vereese. "Beamforming for radio astronomy". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96126.
Texto completo da fonteENGLISH ABSTRACT: Beamforming is a technique used to combine signals from an array of antennas to effectively synthesize a single aperture and beam. In the Radio Astronomy community the technique is used to obtain a desirable beam pattern as well as to electronically point the beam of an array. Next generation radio telescopes such as the Square Kilometre Array (SKA) surpass current technology and will extensively make use of beamforming techniques. Various factors determine the output of a beamformer; however, given an array with a fixed configuration only the weights applied to the incoming signals affect the synthesized aperture and beam. Furthermore, the incoming data must be processed in real-time, at a rate equal to the input-output rate of the processor. Both the weighting function and the real-time implementation of beamforming, are the primary subjects of this thesis. In this thesis various deterministic weighting functions are investigated. The algorithms are implemented in a matlab program, serving as a simulation tool for investigating the techniques. The program is verified by comparing the expected theoretical outcomes to the simulated output. For the program the following functionalities are included: a steering technique, spectral weighting, Dolph-Chebychev, and the Least Square Error algorithm. Applications of these techniques is investigated and their prominence in the Radio Astronomy community is established. For the real-time beamformer implementation, the UniBoard platform configured with beamformer firmware, is investigated. This is important as the UniBoard is an excellent example of a beamformer implementation within the Radio Astronomy community. The architecture is used to emulate a linear array by implementing a python control script, where the output corresponded accurately with the expected theoretical values. The thesis also constitutes the design and implementation of a digital frequency domain beamformer on the ROACH board. This processing board is employed by the Karoo Array Telescope (KAT-7) in South Africa. This work is therefore important as it demonstrates a beamformer implementation on an architecture in use by the Radio Astronomy community. An antenna array is designed and built for the verification of the beamformer design. Results with a good degree of accuracy were obtained and where errors exist they are discussed.
AFRIKKANSE OPSOMMING: Bundelvorming is ’n tegniek waarmee die seine van ’n antenna samestelling gekombineer word om ’n enkele effektiewe stralingsvlak en stralingspatroon te sintiseer. In die Radio Astronomie gemeenskap word die tegniek gebruik om ’n gewenste stralingspatroon te sintiseer sowel as om die rigting van die patroon elektronies te beheer. Die Square Kilometre Array (SKA) is ’n toekomstige radioteleskoop en sal grootliks gebruik maak van bundelvorming tegnieke. Die uitset van bundelvormers word geaffekteer deur verskeie faktore, maar vir ’n gegewe samestelling is dit net die gewigsfunksies wat toegepas word op die inkomende seine wat die gesintiseerde patroon kan beheer. Verder moet die inkomende data verwerk word teen ’n tempo gelykstaande aan die inset-en-uitsetkoers van die verwerker. Die gewigsfunksie so wel as die implementasie van die bundelvormer is albei primêre onderwerpe van die tesis. ’n Verskeindenheid van deterministiese bundelvormingstegnieke sal ondersoek word in hierdie tesis. Die algoritmes is in ’n matlab program geïmplementeer vir simulasie doeleindes. Die program is geverifieër deur die uitset te vergelyk met die verwagte teoretiese waardes. Die program sluit die volgende funksies in: ’n rigting beheer algoritme, spektraalgewigte, Dolph-Chebychev, en die minste vierkantsfout algoritme. Hierdie tegnieke is van belang weens hul toepassing in die Radio Astronomie gemeenskap. Vir die implementasie van ’n bundelvormer is die UniBoard hardeware, geprogrameer in ’n bundelvormings modus, van gebruik gemaak. Hierdie aspek is belangrik omdat die Uni- Board ’n goeie voorbeeld van ’n geïmplementeerde bundelvormer in die Radio Astronomie gemeenskap is. Die UniBoard word gebruik om ’n lineêre samestelling te emuleer deur in python ’n beheer skrip te skryf, waar die uitset van die emuleerder akkuraat ooreenstem met die verwagte waardes. Die tesis behels ook die ontwerp en implementasie van ’n digitale frekwensiegebied bundelvormer op die ROACH platform. Hierdie verwerker word tans gebruik in die Karoo Array Telescope (KAT-7) in Suid-Afrika. Hierdie werk is dus belangrik omdat dit die implementasie van ’n bundelvormer op tegnologie wat huidiglik in die Radio Astronomie gemeenskap gebruik word demonstreer. Daarbenewens is ’n antenna samestelling ontwerp en gebou om die bundelvormer te verifieër. Die resultate is akkuraat tot ’n redelike mate. Waar daar ’n fout onstaan het word dit in die tesis bespreek.
Junklewitz, Henrik. "Statistical inference in radio astronomy". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-177457.
Texto completo da fonteThompson, Nicholas Christopher. "RFI mitigation in radio astronomy". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86637.
Texto completo da fonteENGLISH ABSTRACT: Technical advances in electromagnetics, signal processing and processing power have led to a significant increase in sensitivity and accuracy in radio telescopes. With this increase in sensitivity, radio frequency interference (RFI) has become a much larger problem. The notable growth in wireless communication as well as self generated RFI has further escalated this problem. In order to utilise the full capabilities of modern radio telescopes, RFI mitigation is required on the captured signals. With the enormous data rates of modern radio telescopes, managing RFI has become increasingly difficult, and in order to utilise the full captured radio spectrum, more accurate RFI mitigation strategies will be necessary. The use of different RFI mitigation strategies is studied in the form of online and offline techniques. This includes Spectral Kurtosis, Spectral Flatness and the Var/SumThreshold method. The special case for RFI mitigation in timing pulsars will also be studied. These techniques are well known in the radio astronomy community; here, spectral kurtosis and spectral flatness will be implemented on the raw data as well as the post correlated data. System speed and accuracy will be the deciding factors when testing these methods as possible solutions to this problem.
AFRIKAANSE OPSOMMING: ‘n Toename in die sensitiwiteit van hedendagse radioteleskope kan toegedra word aan die tegniese bevordering in elktromagnetika en seinverwerking. Die toename in sensitiwiteit het egter tot die gevolg dat radiofrekwensiesteuring ‘n groter rol speel in hedendaagse radioteleskope. Die groei in die gebruik van radioverbindings asook die gevolge van self gei¨nduseerde radiofrekwensiesteuring dra ook verder by tot hierdie probleem. Radiofrekwensiesteuring matiging word toegepas op die opgevangde seine, om sodoende gebruik te maak van die volle kapasiteit van moderne radioteleskope. Die bestuur van radiofrekwensiesteuring word bemoeilik deur die groot hoeveelheid intydse data van die radioteleskope. Meer akurate radiofrekwensiesteuring matigingstegnieke word vereis om die bandwydte ten volle te hanteer. Daar word op ‘n aantal verskillende matingstegnieke gefokus. Hierdie tegenieke kan in twee kategorieë verdeel word, naamlik aanlyn- en aflyntegenieke. Onderafdelings van hierdie kategorieë sluit in: spektrale kurtose, spektrale matheid en “Var/SumThreshold”. Daar word ook na ‘n spesiale geval van radiofrekwensiesteuring matiging gekyk, in die opmeeting van tydsberekening-pulsars. Alhoewel hierdie tegnieke bekend is in die radioastronomie gemeenskap, word spektrale kurtose en spektrale matheid egter toegepas op die rou data sowel as postgekorreleerde data. Daar sal op stelsel spoed en akuratheid gefokus word, om vas te stel of hierdie metodes wel moontlike oplossings bied tot die probleem bespreek.
Mitchell, Daniel Allan. "Interference Mitigation in Radio Astronomy". Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/693.
Texto completo da fonteMitchell, Daniel Allan. "Interference Mitigation in Radio Astronomy". University of Sydney. Physics, 2004. http://hdl.handle.net/2123/693.
Texto completo da fonteBock, Douglas Carl-Johan. "Wide Field Aperture Synthesis Radio Astronomy". University of Sydney. Physics, 1998. http://hdl.handle.net/2123/377.
Texto completo da fonteNgongoni, Chipo Nancy. "Neural cross-correlation for radio astronomy". Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/11427.
Texto completo da fonteIncludes bibliographical references (leaves 56-62).
Correlation engines are essential elements of most signal processing systems. Areas of applicability include image processing, speech synthesis and analysis, high energy physics, wireless and mobile communication systems, spread spectrum communication systems and even prosthetics. Finding cost effective and computationally less intensive engines is the thrust of most research. Neural networks have also been used as aids in making complex tasks relatively easy to process.
Manley, Jason Ryan. "A scalable packetised radio astronomy imager". Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15573.
Texto completo da fonteModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams.
Bock, Douglas Carl-Johan. "Wide Field Aperture Synthesis Radio Astronomy". Thesis, The University of Sydney, 1997. http://hdl.handle.net/2123/377.
Texto completo da fonteCarozzi, Tobia. "Radio waves in the ionosphere : Propagation, generation and detection". Doctoral thesis, Uppsala universitet, Institutionen för astronomi och rymdfysik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1184.
Texto completo da fonteLivros sobre o assunto "Radio astronomy"
Lauterbach, Thomas. Radio Astronomy. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36035-1.
Texto completo da fonteKraus, John Daniel. Radio astronomy. Editado por Tiuri Martti 1925-, Räisänen Antti V e Carr Thomas D. 2a ed. Powell, Ohio (P.O. Box 85, Powell 43065): Cygnus-Quasar Books, 1986.
Encontre o texto completo da fonteNourse, Alan Edward. Radio Astronomy. New York: F. Watts, 1989.
Encontre o texto completo da fonteSofue, Yoshiaki. Galactic Radio Astronomy. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3445-9.
Texto completo da fonteNational Research Council (U.S.). Committee on Radio Frequencies., ed. Radio astronomy observatories. Washington, D.C: National Academy Press, 1989.
Encontre o texto completo da fonteLeeuwen, Joeri van. Radio pulsars. [S.l: s.n.], 2004.
Encontre o texto completo da fonteRohlfs, Kristen. Tools of radio astronomy. Berlin: Springer-Verlag, 1986.
Encontre o texto completo da fonteFrequencies, European Science Foundation Committee on Radio Astronomy. Handbook for Radio Astronomy. Dwingeloo: Netherlands Foundation for Research in Astronomy., 1995.
Encontre o texto completo da fonteWilson, Thomas L., e Susanne Hüttemeister. Tools of Radio Astronomy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57001-8.
Texto completo da fonteRohlfs, Kristen. Tools of Radio Astronomy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-02465-2.
Texto completo da fonteCapítulos de livros sobre o assunto "Radio astronomy"
McNally, Derek. "Radio Astronomy (Radio Astronomie)". In Reports on Astronomy, 449–75. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3364-7_28.
Texto completo da fonteBaldwin, J. E., P. G. Mezger, A. Barrett, A. Baudry, R. Booth, D. Jauncey, V. Kapahi et al. "Radio Astronomy". In Reports on Astronomy, 539–66. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2981-4_30.
Texto completo da fonteZarka, Philippe. "Radio Astronomy". In Encyclopedia of Astrobiology, 1413–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1339.
Texto completo da fonteMcGillivray, Donald. "Radio Astronomy". In Physics and Astronomy, 149–64. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09123-2_10.
Texto completo da fonteGallaway, Mark. "Radio Astronomy". In Undergraduate Lecture Notes in Physics, 171–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23377-2_14.
Texto completo da fonteZarka, Philippe. "Radio Astronomy". In Encyclopedia of Astrobiology, 2124–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1339.
Texto completo da fonteBergeron, Jacqueline. "Radio Astronomy". In Reports on Astronomy, 447–59. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1100-3_30.
Texto completo da fonteWest, Richard M. "Radio Astronomy". In Reports on Astronomy, 549–80. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5392-5_30.
Texto completo da fonteLeverington, David. "Radio Astronomy". In A History of Astronomy, 310–19. London: Springer London, 1995. http://dx.doi.org/10.1007/978-1-4471-2124-4_15.
Texto completo da fonteWeik, Martin H. "radio astronomy". In Computer Science and Communications Dictionary, 1400. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15354.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Radio astronomy"
Munira, Sirajum, Dola Saha, Gregory Hellbourg e Aveek Dutta. "Dynamic Protection Zone for Radio Astronomy". In 2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 556–60. IEEE, 2024. http://dx.doi.org/10.1109/dyspan60163.2024.10632855.
Texto completo da fonteUlvestad, James S. "Space radio astronomy". In AIP Conference Proceedings Volume 387. ASCE, 1997. http://dx.doi.org/10.1063/1.52019.
Texto completo da fonteSilva, Adriana V. R. "Solar Radio Astronomy". In MAGNETIC FIELDS IN THE UNIVERSE: From Laboratory and Stars to Primordial Structures. AIP, 2005. http://dx.doi.org/10.1063/1.2077174.
Texto completo da fonteHeald, George, e Paolo Serra. "Panoramic Radio Astronomy". In Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.089.0001.
Texto completo da fonteAnanthakrishnan, S. "Antennas for Radio Astronomy". In 2009 Applied Electromagnetics Conference (AEMC 2009). IEEE, 2009. http://dx.doi.org/10.1109/aemc.2009.5430592.
Texto completo da fonteVirkler, Kristen, Melissa Soriano, Jorge L. Pineda, Jonathon Kocz, Shinji Horiuchi, Tyrone McNichols e Brian Bradford. "DSN Radio Astronomy Spectrometer". In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2021. http://dx.doi.org/10.23919/ursigass51995.2021.9560581.
Texto completo da fontevan Ardenne, Arnold, Carole Ann Jackson, Dion Kant e Parbhu Patel. "Radio Astronomy and Innovation". In Westerbork Telescope 50th Anniversary. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.361.0017.
Texto completo da fonteScholten, Olaf, Jose Bacelar, Stijn Buitink, Heino Falcke, Hans van der Marel, Hans van der Marel, Roland Klees et al. "Observations outside Radio Astronomy". In Westerbork Telescope 50th Anniversary. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.361.0018.
Texto completo da fonteMartens, Andrew. "SmartNICs in Radio Astronomy". In 4th URSI Atlantic RadioScience Conference. Gent, Belgium: URSI – International Union of Radio Science, 2024. http://dx.doi.org/10.46620/ursiatrasc24/anbc6560.
Texto completo da fonteWinberg, Simon. "SwaMURAy - Swapping memory unit for radio astronomy". In 2015 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). IEEE, 2015. http://dx.doi.org/10.1109/radio.2015.7323420.
Texto completo da fonteRelatórios de organizações sobre o assunto "Radio astronomy"
Kassim, Namir E., T. J. Lazio e William C. Erickson. Opening a New Window on the Universe: High-Resolution, Long-Wavelength Radio Astronomy. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2002. http://dx.doi.org/10.21236/ada408473.
Texto completo da fonteEshbaugh, J. V. Interface Control Document Between the Radio Astronomy Pointing Computer (PC) and the HUSIR Antenna Control Unit (ACU). Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2010. http://dx.doi.org/10.21236/ada533347.
Texto completo da fonteFrancesco, Petruccione,, Gastrow, Michael, Hadzic, Senka, Limpitlaw, Justine, Paul, Babu Sena, Wolhuter, Riaan e Kies, Carl. Evaluation of Alternative Telecommunication Technologies for the Karoo Central Astronomy Advantage Area. Academy of Science of South Africa (ASSAf), 2021. http://dx.doi.org/10.17159/assaf.2021/0073.
Texto completo da fonteBACCELLI, François, Sébastien CANDEL, Guy PERRIN e Jean-Loup PUGET. Large Satellite Constellations: Challenges and Impact. Académie des sciences, março de 2024. http://dx.doi.org/10.62686/3.
Texto completo da fonte