Artigos de revistas sobre o tema "Radical hydroxyl. Chlore. Ozone"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Radical hydroxyl. Chlore. Ozone".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ye, Miaomiao, Tuqiao Zhang, Zhiwei Zhu, Yan Zhang e Yiping Zhang. "Photodegradation of 4-chloronitrobenzene in the presence of aqueous titania suspensions in different gas atmospheres". Water Science and Technology 64, n.º 7 (1 de outubro de 2011): 1466–72. http://dx.doi.org/10.2166/wst.2011.531.
Texto completo da fonteCho, Min, Hyenmi Chung e Jeyong Yoon. "Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions". Applied and Environmental Microbiology 69, n.º 4 (abril de 2003): 2284–91. http://dx.doi.org/10.1128/aem.69.4.2284-2291.2003.
Texto completo da fonteJung, Jong Tae, Jong Oh Kim, Bum Gun Kwon e Dong Ha Song. "Removal of Refractory Organic Compounds Using Peroxy Radical and Ozone Reaction in Aqueous Solution". Materials Science Forum 569 (janeiro de 2008): 33–36. http://dx.doi.org/10.4028/www.scientific.net/msf.569.33.
Texto completo da fonteBeltrán, Fernando J., Manuel Checa, Javier Rivas e Juan F. García-Araya. "Modeling the Mineralization Kinetics of Visible Led Graphene Oxide/Titania Photocatalytic Ozonation of an Urban Wastewater Containing Pharmaceutical Compounds". Catalysts 10, n.º 11 (30 de outubro de 2020): 1256. http://dx.doi.org/10.3390/catal10111256.
Texto completo da fonteTootchi, L., R. Seth, S. Tabe e P. Yang. "Transformation products of pharmaceutically active compounds during drinking water ozonation". Water Supply 13, n.º 6 (12 de setembro de 2013): 1576–82. http://dx.doi.org/10.2166/ws.2013.172.
Texto completo da fonteVel Leitner, Nathalie Karpel, e Babak Roshani. "Kinetic of benzotriazole oxidation by ozone and hydroxyl radical". Water Research 44, n.º 6 (março de 2010): 2058–66. http://dx.doi.org/10.1016/j.watres.2009.12.018.
Texto completo da fonteSpanggord, Ronald J., David Yao e Theodore Mill. "Kinetics of Aminodinitrotoluene Oxidations with Ozone and Hydroxyl Radical". Environmental Science & Technology 34, n.º 3 (fevereiro de 2000): 450–54. http://dx.doi.org/10.1021/es990189i.
Texto completo da fonteAzrague, K., S. W. Osterhus e J. G. Biomorgi. "Degradation of pCBA by catalytic ozonation in natural water". Water Science and Technology 59, n.º 6 (1 de março de 2009): 1209–17. http://dx.doi.org/10.2166/wst.2009.078.
Texto completo da fonteUtsumi, Hideo, Sang-Kuk Han e Kazuhiro Ichikawa. "Enhancement of hydroxyl radical generation by phenols and their reaction intermediates during ozonation". Water Science and Technology 38, n.º 6 (1 de setembro de 1998): 147–54. http://dx.doi.org/10.2166/wst.1998.0247.
Texto completo da fonteMutseyekwa, Michael Emmanuel, Şifa Doğan e Saltuk Pirgalıoğlu. "Ozonation for the removal of bisphenol A". Water Science and Technology 76, n.º 10 (2 de agosto de 2017): 2764–75. http://dx.doi.org/10.2166/wst.2017.446.
Texto completo da fonteHan, Y. H., K. Ichikawa e H. Utsumi. "A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation". Water Science and Technology 50, n.º 8 (1 de outubro de 2004): 97–102. http://dx.doi.org/10.2166/wst.2004.0497.
Texto completo da fonteRamasamy, Sathiyamurthi, Tomoki Nakayama, Yu Morino, Takashi Imamura, Yoshizumi Kajii, Shinichi Enami e Kei Sato. "Nitrate radical, ozone and hydroxyl radical initiated aging of limonene secondary organic aerosol". Atmospheric Environment: X 9 (janeiro de 2021): 100102. http://dx.doi.org/10.1016/j.aeaoa.2021.100102.
Texto completo da fonteLiu, Xiaoyu, Harvey E. Jeffries e Kenneth G. Sexton. "Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene". Atmospheric Environment 33, n.º 18 (agosto de 1999): 3005–22. http://dx.doi.org/10.1016/s1352-2310(99)00078-3.
Texto completo da fonteForester, C. D., e J. R. Wells. "Hydroxyl radical yields from reactions of terpene mixtures with ozone". Indoor Air 21, n.º 5 (9 de maio de 2011): 400–409. http://dx.doi.org/10.1111/j.1600-0668.2011.00718.x.
Texto completo da fonteElovitz, Michael S., e Urs von Gunten. "Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The RctConcept". Ozone: Science & Engineering 21, n.º 3 (janeiro de 1999): 239–60. http://dx.doi.org/10.1080/01919519908547239.
Texto completo da fonteEngdahl, Anders, e Bengt Nelander. "A 1:1 complex between a hydroxyl radical and ozone". Journal of Chemical Physics 122, n.º 12 (22 de março de 2005): 126101. http://dx.doi.org/10.1063/1.1872852.
Texto completo da fonteMa, Tsz-Kan, Diyuan Li e Jonathan D. Wilden. "Mechanistic studies of reactive oxygen species mediated electrochemical radical reactions of alkyl iodides". Chemical Communications 57, n.º 67 (2021): 8356–59. http://dx.doi.org/10.1039/d1cc03019a.
Texto completo da fontePisarenko, Aleksey N., Erica J. Marti, Daniel Gerrity, Julie R. Peller e Eric R. V. Dickenson. "Effects of molecular ozone and hydroxyl radical on formation of N-nitrosamines and perfluoroalkyl acids during ozonation of treated wastewaters". Environmental Science: Water Research & Technology 1, n.º 5 (2015): 668–78. http://dx.doi.org/10.1039/c5ew00046g.
Texto completo da fonteRagnar, M., T. Eriksson e T. Reitberger. "Radical Formation in Ozone Reactions with Lignin and Carbohydrate Model Compounds". Holzforschung 53, n.º 3 (10 de maio de 1999): 292–98. http://dx.doi.org/10.1515/hf.1999.049.
Texto completo da fonteFijołek, Lilla, Joanna Świetlik e Marcin Frankowski. "The Role of Sulphate and Phosphate Ions in the Recovery of Benzoic Acid Self-Enhanced Ozonation in Water Containing Bromides". Molecules 26, n.º 9 (5 de maio de 2021): 2701. http://dx.doi.org/10.3390/molecules26092701.
Texto completo da fonteKumarathasan, Prem, Renaud Vincent, Patrick Goegan, Marc Potvin e Josée Guénette. "Hydroxyl radical adduct of 5-aminosalicylic acid: A potential marker of ozone-induced oxidative stress". Biochemistry and Cell Biology 79, n.º 1 (1 de janeiro de 2001): 33–42. http://dx.doi.org/10.1139/o00-091.
Texto completo da fonteHan, Y. H., I. Koshiishi e H. Utsumi. "Determination of an effect of 3-chlorophenol on hydroxyl radical generation during ozonation through kinetic study in the power law type". Water Supply 4, n.º 5-6 (1 de dezembro de 2004): 305–11. http://dx.doi.org/10.2166/ws.2004.0121.
Texto completo da fonteShao, Yu, Zhicheng Pang, Lili Wang e Xiaowei Liu. "Efficient Degradation of Acesulfame by Ozone/Peroxymonosulfate Advanced Oxidation Process". Molecules 24, n.º 16 (8 de agosto de 2019): 2874. http://dx.doi.org/10.3390/molecules24162874.
Texto completo da fonteIkhlaq, Amir, Rahat Javaid, Asia Akram, Umair Yaqub Qazi, Javeria Erfan, Metwally Madkour, Mohamed Elnaiem M. Abdelbagi, Sami M. Ibn Shamsah e Fei Qi. "Application of Attapulgite Clay-Based Fe-Zeolite 5A in UV-Assisted Catalytic Ozonation for the Removal of Ciprofloxacin". Journal of Chemistry 2022 (19 de maio de 2022): 1–10. http://dx.doi.org/10.1155/2022/2846453.
Texto completo da fonteShi, Fa Min, Lei Wang, Si Mo Shi, Han Fei Zhang, Chang Qing Dong e Wu Qin. "Catalytic Hydroxyl Radical Generation by CuO Confined in Multi-Walled Carbon Nanotubes". Advanced Materials Research 557-559 (julho de 2012): 448–55. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.448.
Texto completo da fonteRagnar, M., T. Eriksson e T. Reitberger. "Detection of Radicals Generated by Strong Oxidants in Acidic Media". Holzforschung 53, n.º 3 (10 de maio de 1999): 285–91. http://dx.doi.org/10.1515/hf.1999.048.
Texto completo da fonteHunter, Gary, Bob Hulsey, Jim Coughenour, Thomas Walz e Shane Snyder. "Out in the Ozone the Return of Ozone and the Hydroxyl Radical to Wastewater Disinfection". Proceedings of the Water Environment Federation 2006, n.º 12 (1 de janeiro de 2006): 1192–201. http://dx.doi.org/10.2175/193864706783749620.
Texto completo da fonteZhu, Shumin, Bingzhi Dong, Naiyun Gao e Jin Jiang. "Removal of IBMP using ozonation: role of ozone and hydroxyl radical". Desalination and Water Treatment 57, n.º 59 (20 de junho de 2016): 28776–83. http://dx.doi.org/10.1080/19443994.2016.1193063.
Texto completo da fonteNöthe, Tobias, Hans Fahlenkamp e Clemens von Sonntag. "Ozonation of Wastewater: Rate of Ozone Consumption and Hydroxyl Radical Yield". Environmental Science & Technology 43, n.º 15 (agosto de 2009): 5990–95. http://dx.doi.org/10.1021/es900825f.
Texto completo da fonteBurns, Nick, Gary Hunter, Amanda Jackman, Bob Hulsey, Jim Coughenour e Thomas Walz. "The Return of Ozone and the Hydroxyl Radical to Wastewater Disinfection". Ozone: Science & Engineering 29, n.º 4 (31 de julho de 2007): 303–6. http://dx.doi.org/10.1080/01919510701463206.
Texto completo da fonteAli, Zarafshan, Amir Ikhlaq, Umair Yaqub Qazi, Asia Akram, Iftikhar Ul-Hasan, Amira Alazmi, Fei Qi e Rahat Javaid. "Removal of Disperse Yellow-42 Dye by Catalytic Ozonation Using Iron and Manganese-Loaded Zeolites". Water 15, n.º 17 (29 de agosto de 2023): 3097. http://dx.doi.org/10.3390/w15173097.
Texto completo da fonteJiménez-Estrada, Manuel, Ricardo Reyes-Chilpa, Arturo Navarro-Ocaña e Daniel Arrieta-Báez. "Reactivity of Several Reactive Oxygen Species (ROS) with the Sesquiterpene Cacalol". Natural Product Communications 3, n.º 4 (abril de 2008): 1934578X0800300. http://dx.doi.org/10.1177/1934578x0800300403.
Texto completo da fonteGlaze, William H., Fernando Beltran, Tuula Tuhkanen e Joon-Wun Kang. "Chemical Models of Advanced Oxidation Processes". Water Quality Research Journal 27, n.º 1 (1 de fevereiro de 1992): 23–42. http://dx.doi.org/10.2166/wqrj.1992.002.
Texto completo da fonteZhao, Wen Yu, Xiao Feng Zheng, Li Wei Xu, Guang Wen Yang e Qi Mu. "Overview and Prospect of Strengthen Ozone Oxidation Technology in Water Treatment". Advanced Materials Research 726-731 (agosto de 2013): 1710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.1710.
Texto completo da fonteDerwent, Richard G. "Representing Organic Compound Oxidation in Chemical Mechanisms for Policy-Relevant Air Quality Models under Background Troposphere Conditions". Atmosphere 11, n.º 2 (7 de fevereiro de 2020): 171. http://dx.doi.org/10.3390/atmos11020171.
Texto completo da fonteKaramah, Eva Fathul, Ika Putri Adripratiwi e Linggar Anindita. "Combination of Ozonation and Adsorption Using Granular Activated Carbon (GAC) for Tofu Industry Wastewater Treatment". Indonesian Journal of Chemistry 18, n.º 4 (12 de novembro de 2018): 600. http://dx.doi.org/10.22146/ijc.26724.
Texto completo da fonteDhanakodi, P., e M. Jayendran. "Hydroxyl Radical Rinse Water Technology using Ozone Ultasonic and Ultraviolet Oxidation Process". Indian Journal of Public Health Research & Development 8, n.º 3s (2017): 166. http://dx.doi.org/10.5958/0976-5506.2017.00271.6.
Texto completo da fontePark, Ji-Ho. "CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical". Korean Journal of Environmental Health Sciences 35, n.º 6 (31 de dezembro de 2009): 532–37. http://dx.doi.org/10.5668/jehs.2009.35.6.532.
Texto completo da fontePreis, S., I. C. Panorel, I. Kornev, H. Hatakka e J. Kallas. "Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation". Water Science and Technology 68, n.º 7 (1 de outubro de 2013): 1536–42. http://dx.doi.org/10.2166/wst.2013.399.
Texto completo da fonteChen, L., F. Qi, B. Xu, Z. Xu, J. Shen e K. Li. "The efficiency and mechanism of γ-alumina catalytic ozonation of 2-methylisoborneol in drinking water". Water Supply 6, n.º 3 (1 de julho de 2006): 43–51. http://dx.doi.org/10.2166/ws.2006.726.
Texto completo da fonteUmosekhaimhe, G. O., e S. E. Umukoro. "Thermochemical Evaluation of Hydroxyl and Peroxyl Radical Precursors in the Formation of Tropospheric Ozone Reactions". International Journal of Engineering Research in Africa 3 (novembro de 2010): 74–83. http://dx.doi.org/10.4028/www.scientific.net/jera.3.74.
Texto completo da fonteVan der Zee, J., E. Van Beek, T. M. A. R. Dubbelman e J. Van Steveninck. "Toxic effects of ozone on murine L929 fibroblasts. Damage to DNA". Biochemical Journal 247, n.º 1 (1 de outubro de 1987): 69–72. http://dx.doi.org/10.1042/bj2470069.
Texto completo da fonteTan, Zhaofeng, Keding Lu, Meiqing Jiang, Rong Su, Hongli Wang, Shengrong Lou, Qingyan Fu et al. "Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation". Atmospheric Chemistry and Physics 19, n.º 6 (20 de março de 2019): 3493–513. http://dx.doi.org/10.5194/acp-19-3493-2019.
Texto completo da fonteKamimura, M., S. Furukawa e J. Hirotsuji. "Development of a simulator for ozone/UV reactor based on CFD analysis". Water Science and Technology 46, n.º 11-12 (1 de dezembro de 2002): 13–19. http://dx.doi.org/10.2166/wst.2002.0710.
Texto completo da fonteYapsaklı, Kozet, e Zehra S. Can. "Interaction of Ozone with Formic Acid: A System which Supresses the Scavenging Effect of HCO3-/CO32-". Water Quality Research Journal 39, n.º 2 (1 de maio de 2004): 140–48. http://dx.doi.org/10.2166/wqrj.2004.021.
Texto completo da fonteMasten, Susan J., e Jürg Hoigné. "Comparison of Ozone and Hydroxyl Radical-Induced Oxidation of Chlorinated Hydrocarbons in Water". Ozone: Science & Engineering 14, n.º 3 (junho de 1992): 197–214. http://dx.doi.org/10.1080/01919519208552475.
Texto completo da fonteCheng, Wen, Li Jiang, Xuejun Quan, Chen Cheng, Xiaoxue Huang, Zhiliang Cheng e Lu Yang. "Ozonation process intensification of p-nitrophenol by in situ separation of hydroxyl radical scavengers and microbubbles". Water Science and Technology 80, n.º 1 (1 de julho de 2019): 25–36. http://dx.doi.org/10.2166/wst.2019.227.
Texto completo da fonteSangadkit, W., e J. Kongtrub. "Effective microbial disinfection in food industry with hydroxyl radical fumigation". Food Research 4, S4 (20 de dezembro de 2020): 65–72. http://dx.doi.org/10.26656/fr.2017.4(s4).010.
Texto completo da fonteCazorla, M., W. H. Brune, X. Ren e B. Lefer. "Direct measurement of ozone production rates in Houston in 2009 and comparison with two estimation methods". Atmospheric Chemistry and Physics Discussions 11, n.º 10 (10 de outubro de 2011): 27521–46. http://dx.doi.org/10.5194/acpd-11-27521-2011.
Texto completo da fonteFelis, E., e K. Miksch. "Nonylphenols degradation in the UV, UV/H2O2, O3 and UV/O3 processes – comparison of the methods and kinetic study". Water Science and Technology 71, n.º 3 (6 de janeiro de 2015): 446–53. http://dx.doi.org/10.2166/wst.2015.011.
Texto completo da fonte