Literatura científica selecionada sobre o tema "Radiation use efficiency"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Radiation use efficiency".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Radiation use efficiency"
Priadkina, G. O., O. O. Stasik, A. M. Poliovyi, O. E. Yarmolska e K. Kuzmova. "Radiation use efficiency of winter wheat canopy during pre-anthesis growth". Fiziologia rastenij i genetika 52, n.º 3 (junho de 2020): 208–23. http://dx.doi.org/10.15407/frg2020.03.208.
Texto completo da fonteLi, Q., M. Liu, J. Zhang, B. Dong e Q. Bai. "Biomass accumulation and radiation use efficiency of winter wheat under deficit irrigation regimes". Plant, Soil and Environment 55, No. 2 (24 de fevereiro de 2009): 85–91. http://dx.doi.org/10.17221/315-pse.
Texto completo da fonteShiraiwa, Tatsuhiko, Yohei Kawasaki e Koki Homma. "Estimation of Crop Radiation Use Efficiency". Japanese Journal of Crop Science 80, n.º 3 (2011): 360–64. http://dx.doi.org/10.1626/jcs.80.360.
Texto completo da fonteKemanian, Armen R., Claudio O. Stöckle e David R. Huggins. "Variability of Barley Radiation‐Use Efficiency". Crop Science 44, n.º 5 (setembro de 2004): 1662–72. http://dx.doi.org/10.2135/cropsci2004.1662.
Texto completo da fonteMorrison, Malcolm J., e Doug W. Stewart. "Radiation‐Use Efficiency in Summer Rape". Agronomy Journal 87, n.º 6 (novembro de 1995): 1139–42. http://dx.doi.org/10.2134/agronj1995.00021962008700060016x.
Texto completo da fonteRosenthal, W. D., e T. J. Gerik. "Radiation Use Efficiency among Cotton Cultivars". Agronomy Journal 83, n.º 4 (julho de 1991): 655–58. http://dx.doi.org/10.2134/agronj1991.00021962008300040001x.
Texto completo da fonteHan, H., Z. Li, T. Ning, X. Zhang, Y. Shan e M. Bai. "Radiation use efficiency and yield of winter wheat under deficit irrigation in North Chin". Plant, Soil and Environment 54, No. 7 (17 de julho de 2008): 313–19. http://dx.doi.org/10.17221/421-pse.
Texto completo da fonteAndrade, F. H., S. A. Uhart e A. Cirilo. "Temperature affects radiation use efficiency in maize". Field Crops Research 32, n.º 1-2 (fevereiro de 1993): 17–25. http://dx.doi.org/10.1016/0378-4290(93)90018-i.
Texto completo da fonteSinclair, Thomas R., Tatsuhiko Shiraiwa e Graeme L. Hammer. "Variation in Crop Radiation‐Use Efficiency with Increased Diffuse Radiation". Crop Science 32, n.º 5 (setembro de 1992): 1281–84. http://dx.doi.org/10.2135/cropsci1992.0011183x003200050043x.
Texto completo da fonteGoyne, PJ, SP Milroy, JM Lilley e JM Hare. "Radiation interception, radiation use efficiency and growth of barley cultivars". Australian Journal of Agricultural Research 44, n.º 6 (1993): 1351. http://dx.doi.org/10.1071/ar9931351.
Texto completo da fonteTeses / dissertações sobre o assunto "Radiation use efficiency"
Chuong, Nguyen Duc Xuan. "Identification of radiation use efficiency traits in a wheat and spelt population". Thesis, University of Nottingham, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.662207.
Texto completo da fonteDempster, Steven M. "The physiological basis of genetic variation in radiation-use efficiency and biomass in wheat". Thesis, University of Nottingham, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.756110.
Texto completo da fonteGarbulsky, Martín Fabio. "On the remote sensing of the radiation use efficiency and the gross primary productivity of terrestrial vegetation". Doctoral thesis, Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/10803/3713.
Texto completo da fonteSe abordaron cuatro objetivos específicos. El primero fue analizar y sintetizar la literatura científica sobre la relación entre el Índice de Reflectancia Fotoquímica (PRI), un índice espectral vinculado a la eficiencia fotosintética, y diversas variables ecofisiológicas a través de un amplio rango de tipos funcionales de plantas y ecosistemas. El segundo objetivo fue analizar y sintetizar los datos de la variabilidad espacial de la GPP y la variabilidad espacial y temporal de la RUE y sus controles climáticos para un amplio rango de tipos de vegetación, desde la tundra a la selva tropical. El tercer objetivo fue comprobar si diferentes índices espectrales, es decir, el PRI, el NDVI (Normalized Difference Vegetation Index) y EVI (Enhanced Vegetation Index), derivados del Moderate Resolution Imaging Spectroradiometer (MODIS) son buenos estimadores de la captación de carbono a diferentes escalas temporales en un bosque mediterráneo. El cuarto objetivo fue evaluar el uso de MODIS PRI como estimador de la RUE en un amplio rango de tipos de vegetación mediante el uso de datos sobre la captación de carbono de la vegetación derivados de las torres de covarianza turbulenta.
Las principales conclusiones de esta tesis son que hay una coherencia emergente de la relación RUE-PRI que sugiere un sorprendente grado de convergencia funcional de los componentes bioquímicos, fisiológicos y estructurales que afectan la eficiencia de captación de carbono a escala de hoja, de cobertura y de ecosistemas. Al complementar las estimaciones de la fracción de radiación fotosintéticamente activa interceptada por la vegetación (FPAR), el PRI permite mejorar la evaluación de los flujos de carbono a diferentes escalas, a través de la estimación de la RUE. Una segunda conclusión apoya la idea de que el funcionamiento anual de la vegetación es más limitado por la disponibilidad de agua que por la temperatura. La variabilidad espacial de la RUE anual y máxima puede explicarse en gran medida por la precipitación anual, más que por el tipo de vegetación. Una tercera conclusión es que, si bien EVI puede estimar el incremento diametral anual de los troncos, y el PRI puede estimar la fotosíntesis neta diaria nivel de hoja y la eficiencia en el uso de radiación, el papel del NDVI es más limitado como un estimador de cualquier parte del ciclo del carbono en bosques mediterráneos. Por lo tanto, el EVI y el PRI son excelentes herramientas para el seguimiento del ciclo del carbono en los bosques mediterráneos. Por último, el PRI derivado de información satelital disponible libremente, presenta una relación positiva significativa con la RUE para un amplio rango de diferentes tipos de bosques, incluso en años determinados, en bosques caducifolios. En general, esta tesis proporciona un mejor entendimiento de los controles espacial y temporal de la RUE y abre la posibilidad de estimar RUE en tiempo real y, por tanto, la captación de carbono de los bosques a nivel de ecosistemas a partir del PRI.
Carbon uptake by vegetation is the largest global CO2 flux and greatly influences the ecosystem functions. However, its temporal and spatial variability is still not well known and difficult to estimate. Remote sensing techniques can help to better estimate the terrestrial gross primary production (GPP), that is the ecosystem level expression of the photosynthesis process or the rate at which the ecosystem's producers capture CO2. The main objective of this thesis was to find a way to estimate the spatial and temporal variability of the Radiation Use Efficiency (RUE) at the ecosystem scale and therefore to arrive to more accurate ways to estimate GPP of terrestrial vegetation by means of remotely sensed data. Four specific objectives were addressed in this thesis. The first objective was to examine and synthesize the scientific literature on the relationships between the Photochemical Reflectance Index (PRI), a narrow-band spectral index linked to photosynthetic efficiency, and several ecophysiological variables across a wide range of plant functional types and ecosystems. The second objective was to analyze and synthesize data for the spatial variability of GPP and the spatial and temporal variability of the RUE and its climatic controls for a wide range of vegetation types, from tundra to rain forest. The third objective was to test whether different spectral indices, i.e. PRI, NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index), derived from the MODerate resolution Imaging Spectroradiometer (MODIS) can be indicators of carbon uptake at different temporal scales by analyzing the relationships between detailed ecophysiological variables at the stand level in a Mediterranean forest. The fourth objective was to assess the use of MODIS PRI as surrogate of RUE in a wide range of vegetation types by using data on carbon uptake of the vegetation derived from eddy covariance towers.
The main conclusions of this thesis are that there is an emerging consistency of the RUE-PRI relationship that suggests a surprising degree of functional convergence of biochemical, physiological and structural components affecting leaf, canopy and ecosystem carbon uptake efficiencies. By complementing the estimations of the fraction of photosynthetically active radiation intercepted by the vegetation (fPAR) PRI enables improved assessment of carbon fluxes at different scales, through the estimation of RUE. A second conclusion supports the idea that the annual functioning of vegetation is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. A third conclusion is that while EVI can estimate annual diametric wood increment, and PRI can estimate daily leaf level net photosynthesis and radiation use efficiency, the role NDVI is more limited as a surrogate of any part of the carbon cycle in this type of forest. Therefore, EVI and PRI are excellent tools for vegetation monitoring of carbon cycle in the Mediterranean forests, the first ones we tested in this thesis. Finally, the PRI derived from freely available satellite information was also found to present significant positive relationship with the RUE for a very wide range of different forest types, even in determined years, the deciduous forests. Overall, this thesis provides a better understanding of the spatial and temporal controls of the RUE and opens the possibility to estimate RUE in real time and, therefore, actual carbon uptake of forests at the ecosystem level using the PRI.
Keywords carbon cycle, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Photochemical Reflectance Index, primary productivity, photosynthesis, remote sensing, climatic controls, eddy covariance, radiation use efficiency, terrestrial vegetation.
Narayanan, Sruthi. "Canopy architecture and water productivity in sorghum". Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/8760.
Texto completo da fonteDepartment of Agronomy
Robert M. Aiken
Increasing crop water use efficiency (WUE), the amount of biomass produced per unit water consumed, can enhance crop productivity and yield potential. The objective of the first study was to evaluate the factors affecting water productivity among eight sorghum (Sorghum bicolor (L.) Moench) genotypes, which differ in canopy architecture. Sorghum genotypes, grown under field conditions, showed significant differences in (a) biomass production, (b) water use, (c) intercepted radiation, (d) water productivity and (e) radiation use efficiency (RUE; the amount of biomass produced per unit of intercepted radiation which is suitable for photosynthesis). WUE and RUE were more strongly correlated to biomass production than to water use or intercepted radiation, respectively. RUE was positively correlated to WUE and tended to increase with internode length, the parameter used to characterize canopy architecture. These results demonstrate that increased utilization of radiation can increase water productivity in plants. Sorghum canopies that increase light transmission to mid−canopy leaves can increase RUE and also have the potential to increase crop productivity and WUE. The objective of the second study was to develop a quantitative model to predict leaf area index (LAI), a common quantification of canopy architecture, for sorghum from emergence to flag leaf stage. LAI was calculated from an algorithm developed to consider area of mature leaves (leaves with a ligule/collar), area of expanding leaves (leaves without a ligule/collar), total leaf area per plant and plant population. Slope of regression of modeled LAI on observed LAI varied for photoperiod sensitive (PPS) and insensitive (non−PPS) genotypes in 2010. A good correlation was found between the modeled and observed LAI with coefficient of determination (R[superscript]2) 0.96 in 2009 and 0.94 (non−PPS) and 0.88 (PPS) in 2010. These studies suggest that canopy architecture has prominent influence on water productivity of crops and quantification of canopy architecture through an LAI simulation model has potential in understanding RUE, WUE and crop productivity.
Barker, Sheila. "Growth, yield and radiation use efficiency in intercrops of wheat (Triticum aestivum L.) and field beans (Vicia faba L.)". Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558729.
Texto completo da fonteNoronha, Sannervik Angela. "Modelling productivity of willow stands in Sweden : evaluation of concepts for radiation use efficiency and soil water and nitrogen availability /". Uppsala : Dept. of Short Rotation Forestry, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/s286-ab.html.
Texto completo da fonteKarlberg, Louise. "Irrigation with saline water using low-cost drip-irrigation systems in sub-Saharan Africa". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209.
Texto completo da fonteAssunção, Idelina Cabral de Assis [UNESP]. "Avaliação da eficiência do amendoim (Arachis hypogaea L.) na utilização da radiação fotossinteticamente ativa para produção de matéria seca". Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/90595.
Texto completo da fonteUniversidade Estadual Paulista (UNESP)
Um ensaio, com amendoim (Arachis hypogaea L.), cv. IAC-TATUST, foi conduzido, na área experimental do Setor de Ciências Ambientais (21,85° S; 48,43° W; 786 m), FCA/UNESP, em Botucatu, SP, em parcela única sob tratamento úmido durante o período de 11/02/2001 a 06/06/2001. Durante todas as fases de crescimento das plantas foram monitoradas as radiações fotossinteticamente ativa incidente, refletida e transmitida, bem como a produção semanal da biomassa acumulada e sua energia química, incluindo raízes, hastes, folhas, flores, frutos e sementes, com o objetivo de determinar a eficiência de uso da radiação (EUR) e a eficiência de conversão da radiação interceptada (ECR) pelas plantas cultivadas. Os resultados mostraram que a EUR média foi de 1,33 g MJ-1 e a ECR foi de 2,5%, cujos valores estão coerentes com aqueles encontrados em literatura. Nas condições de Botucatu, a cultura do amendoim interceptou, aproximadamente 600 MJ m-2 de radiação PAR, de modo que no final do seu ciclo a energia da biomassa atingiu a magnitude de 18 MJ m-2. Em termos médios, o coeficiente de extinção da luz (k) foi de 0,68, o índice de colheita, em base de energia, foi de 0,38 e a produtividade obtida, do amendoim em casca, foi equivalente a 4,5 t ha-£.
A trial, with peanut (Arachis hypogaea L.), cv. IAC-TATU-ST, was carried out, in experimental area of Setor de Ciências Ambientais (21,85° S; 48,43° W; 786 m), FCA/UNESP, in Botucatu, SP, in single section with humid treatment during the period from 11/02/2001 to 06/06/2001. For all growth phases of peanut crop, the incident, reflected and transmitted photosynthetically active radiations were monitored, as well as the weekly production of the accumulated biomass, chemical energy, including roots, stems, leaves, flowers, fruits and seeds, with purpose of determining the radiation use efficiency and the radiation conversion efficiency of intercepted PAR for the cultivated plants. The results showed that EUR was about 1,33 g MJ-1 and ECR was about 2,5%. The values are coherent with those found in literature. In Botucatu conditions, the peanut crop intercepted, more or less 600 MJ m-2 of PAR, so that in the end of cycle, the biomass energy reached to 18 MJ m-2. In standard terms, the light extinction coefficient (k) was about 0.68, the harvest index, in energy basis, was about 0.38 and peanut yield, in peel, was equivalent to 4.5 t ha-£.
Monje, Oscar A. "Effects of Elevated CO2 on Crop Growth Rates, Radiation Absorption, Canopy Quantum Yield, Canopy Carbon Use Efficiency, and Root Respiration of Wheat". DigitalCommons@USU, 1993. https://digitalcommons.usu.edu/etd/6763.
Texto completo da fonteAssunção, Idelina Cabral de Assis 1961. "Avaliação da eficiência do amendoim (Arachis hypogaea L.) na utilização da radiação fotossinteticamente ativa para produção de matéria seca /". Botucatu : [s.n.], 2005. http://hdl.handle.net/11449/90595.
Texto completo da fonteBanca: Raimundo Leite Cruz
Banca: Emerson Galvani
Resumo: Um ensaio, com amendoim (Arachis hypogaea L.), cv. IAC-TATUST, foi conduzido, na área experimental do Setor de Ciências Ambientais (21,85° S; 48,43° W; 786 m), FCA/UNESP, em Botucatu, SP, em parcela única sob "tratamento úmido" durante o período de 11/02/2001 a 06/06/2001. Durante todas as fases de crescimento das plantas foram monitoradas as radiações fotossinteticamente ativa incidente, refletida e transmitida, bem como a produção semanal da biomassa acumulada e sua energia química, incluindo raízes, hastes, folhas, flores, frutos e sementes, com o objetivo de determinar a eficiência de uso da radiação (EUR) e a eficiência de conversão da radiação interceptada (ECR) pelas plantas cultivadas. Os resultados mostraram que a EUR média foi de 1,33 g MJ-1 e a ECR foi de 2,5%, cujos valores estão coerentes com aqueles encontrados em literatura. Nas condições de Botucatu, a cultura do amendoim interceptou, aproximadamente 600 MJ m-2 de radiação PAR, de modo que no final do seu ciclo a energia da biomassa atingiu a magnitude de 18 MJ m-2. Em termos médios, o coeficiente de extinção da luz (k) foi de 0,68, o índice de colheita, em base de energia, foi de 0,38 e a produtividade obtida, do amendoim em casca, foi equivalente a 4,5 t ha-£.
Abstract: A trial, with peanut (Arachis hypogaea L.), cv. IAC-TATU-ST, was carried out, in experimental area of Setor de Ciências Ambientais (21,85° S; 48,43° W; 786 m), FCA/UNESP, in Botucatu, SP, in single section with "humid treatment" during the period from 11/02/2001 to 06/06/2001. For all growth phases of peanut crop, the incident, reflected and transmitted photosynthetically active radiations were monitored, as well as the weekly production of the accumulated biomass, chemical energy, including roots, stems, leaves, flowers, fruits and seeds, with purpose of determining the radiation use efficiency and the radiation conversion efficiency of intercepted PAR for the cultivated plants. The results showed that EUR was about 1,33 g MJ-1 and ECR was about 2,5%. The values are coherent with those found in literature. In Botucatu conditions, the peanut crop intercepted, more or less 600 MJ m-2 of PAR, so that in the end of cycle, the biomass energy reached to 18 MJ m-2. In standard terms, the light extinction coefficient (k) was about 0.68, the harvest index, in energy basis, was about 0.38 and peanut yield, in peel, was equivalent to 4.5 t ha-£.
Mestre
Livros sobre o assunto "Radiation use efficiency"
Horan, Stephen John. Test report: Low cost access and efficient use of TDRSS. [Washington, DC: National Aeronautics and Space Administration, 1996.
Encontre o texto completo da fonteDhingra, K. K. Efficient use of solar energy for crop production: Final technical report of the PL-480 project. Ludhiana, Punjab, India: Dept. of Agronomy, Punjab Agricultural University, 1987.
Encontre o texto completo da fonteCerqueira, Manuel D. Gated SPECT MPI. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199392094.003.0006.
Texto completo da fonteGofeld, Michael. Lumbar Transforaminal and Nerve Root Injections: Ultrasound. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199908004.003.0017.
Texto completo da fonteNarouze, Samer N., ed. Multimodality Imaging Guidance in Interventional Pain Management. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199908004.001.0001.
Texto completo da fonteRampinelli, Giuliano Arns, e Solange Machado. Manual de sistemas fotovoltaicos de geração distribuída: Teoria e prática. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-330-5.
Texto completo da fonteCapítulos de livros sobre o assunto "Radiation use efficiency"
Sadras, Victor O., Francisco J. Villalobos e Elias Fereres. "Radiation Interception, Radiation Use Efficiency and Crop Productivity". In Principles of Agronomy for Sustainable Agriculture, 169–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46116-8_13.
Texto completo da fontePunia, Himani, Jayanti Tokas, Anurag Malik, Satpal, Anju Rani, Pernika Gupta, Anita Kumari, Virender S. Mor, Axay Bhuker e Sandeep Kumar. "Solar Radiation and Nitrogen Use Efficiency for Sustainable Agriculture". In Resources Use Efficiency in Agriculture, 177–212. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6953-1_6.
Texto completo da fonteMurchie, Erik H., Alexandra Townsend e Matthew Reynolds. "Crop Radiation Capture and Use Efficiency". In Crop Science, 73–106. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8621-7_171.
Texto completo da fonteMurchie, Erik, e Matthew Reynolds. "Crop Radiation Capture and Use Efficiency". In Encyclopedia of Sustainability Science and Technology, 2615–38. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_171.
Texto completo da fonteMurchie, Erik H., Alexandra Townsend e Matthew Reynolds. "Crop Radiation Capture and Use Efficiency". In Encyclopedia of Sustainability Science and Technology, 1–34. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-2493-6_171-3.
Texto completo da fonteMurchie, Erik, e Matthew Reynolds. "Crop Radiation Capture and Use Efficiency". In Sustainable Food Production, 591–614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5797-8_171.
Texto completo da fonteGuiducci, Marcello, e Paolo Benincasa. "Turgor-Related Leaf Movements and Radiation Use Efficiency in Sunflower". In Photosynthesis: from Light to Biosphere, 3577–80. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_842.
Texto completo da fonteStöckle, Claudio O., Armen R. Kemanian e Cristián Kremer. "On the Use of Radiation- and Water-Use Efficiency for Biomass Production Models". In Response of Crops to Limited Water, 39–58. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2134/advagricsystmodel1.c2.
Texto completo da fonteSinclair, T. R. "Canopy Carbon Assimilation and Crop Radiation-Use Efficiency Dependence on Leaf Nitrogen Content". In Modeling Crop Photosynthesis-from Biochemistry to Canopy, 95–107. Madison, WI, USA: Crop Science Society of America and American Society of Agronomy, 2015. http://dx.doi.org/10.2135/cssaspecpub19.c6.
Texto completo da fonteLandsberg, J. J., S. D. Prince, P. G. Jarvis, R. E. McMurtrie, R. Luxmoore e B. E. Medlyn. "Energy Conversion and Use in Forests: An Analysis of Forest Production in Terms of Radiation Utilisation Efficiency (ɛ)". In The Use of Remote Sensing in the Modeling of Forest Productivity, 273–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5446-8_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Radiation use efficiency"
Wang, Jian, Shiping Zhu e Yi Su. "Use end reflections to improve the radiation efficiency of bow-tie antenna". In 2013 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR). IEEE, 2013. http://dx.doi.org/10.1109/iwagpr.2013.6601543.
Texto completo da fonteHasman, Erez, Vladimir Kleiner, Nir Dahan e Igal Balin. "Manipulation of a Thermal Emission by Use of Micro- and Nanoscale Structures". In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23379.
Texto completo da fonteAsif, Muhammad, Amjed Ali, Muhammad Maqsood e Shahbaz Ahmad. "Growth, radiation use efficiency and yield parameters of wheat affected by different levels of irrigation and nitrogen". In 2010 International Conference on Bioinformatics and Biomedical Technology. IEEE, 2010. http://dx.doi.org/10.1109/icbbt.2010.5478922.
Texto completo da fonteNouvellon, Yann, Danny L. Seen, S. Rambal, Agnes Begue, M. Susan Moran, Yann H. Kerr e Jiaguo Qi. "Time variation of radiation use efficiency of a semiarid grassland: consequences for remotely sensed estimation of primary production". In Remote Sensing, editado por Edwin T. Engman. SPIE, 1998. http://dx.doi.org/10.1117/12.332751.
Texto completo da fonteKovalev, Oleg P., e Alexandr V. Volkov. "Potential and Use of Solar Energy in Primorye Region (Russia)". In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65058.
Texto completo da fonteOzawa, Takashi, Michael F. Modest e Deborah A. Levin. "Spectral Module for Photon Monte Carlo Calculations in Hypersonic Nonequilibrium Radiation". In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88599.
Texto completo da fonteHigashiguchi, Takeshi, Naoto Dojyo, Masaya Hamada, Keita Kawasaki, Wataru Sasaki e Shoichi Kubodera. "Enhancement of conversion efficiency of extreme ultraviolet radiation from a liquid aqueous solution microjet target by use of dual laser pulses". In SPIE 31st International Symposium on Advanced Lithography, editado por Michael J. Lercel. SPIE, 2006. http://dx.doi.org/10.1117/12.659162.
Texto completo da fonteYue, Lindsey, Brantley Mills e Clifford K. Ho. "Effect of Quartz Aperture Covers on the Fluid Dynamics and Thermal Efficiency of Falling Particle Receivers". In ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3910.
Texto completo da fonteMaslensky, V. V., e Y. I. Bulygin. "EFFICIENCY OF SOLAR PROTECTION OF THE MOBILE AGRICULTURAL MACHINE CAB". In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.28-31.
Texto completo da fonteViallet, Marianne, Ge´rald Poume´rol, Olivier Dessombz e Louis Jezequel. "Acoustical Radiation Calculation of Complex Structures Using Finite Element Methods". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34635.
Texto completo da fonte