Literatura científica selecionada sobre o tema "Radiation therapy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Radiation therapy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Radiation therapy"
Jingu, K., R. Umezawa, T. Yamamoto, Y. Ishikawa, N. Takahashi, K. Takeda, Y. Suzuki, S. Teramura e S. Omata. "Radiation Therapy". Nihon Kikan Shokudoka Gakkai Kaiho 72, n.º 2 (10 de abril de 2021): 84–87. http://dx.doi.org/10.2468/jbes.72.84.
Texto completo da fonteArticle, Editorial. "RADIATION THERAPY". Diagnostic radiology and radiotherapy, n.º 1 (26 de abril de 2018): 133–37. http://dx.doi.org/10.22328/2079-5343-2018-9-1-133-137.
Texto completo da fonteStrohl, Roberta Anne. "Radiation Therapy". Nursing Clinics of North America 25, n.º 2 (junho de 1990): 309–29. http://dx.doi.org/10.1016/s0029-6465(22)02928-0.
Texto completo da fonteHaylock, Pamela J. "Radiation Therapy". American Journal of Nursing 87, n.º 11 (novembro de 1987): 1441. http://dx.doi.org/10.2307/3425900.
Texto completo da fonteFrassica, Deborah A., Sarah Thurman e James Welsh. "RADIATION THERAPY". Orthopedic Clinics of North America 31, n.º 4 (outubro de 2000): 557–66. http://dx.doi.org/10.1016/s0030-5898(05)70175-9.
Texto completo da fonteShipley, William U. "Radiation Therapy". Journal of Urology 147, n.º 3 Part 2 (março de 1992): 929–30. http://dx.doi.org/10.1016/s0022-5347(17)37425-6.
Texto completo da fonteCharkravarti, A., M. Wang, I. Robins, A. Guha, W. Curren, D. Brachman, C. Schultz et al. "Radiation Therapy". Neuro-Oncology 12, Supplement 4 (21 de outubro de 2010): iv105—iv112. http://dx.doi.org/10.1093/neuonc/noq116.s15.
Texto completo da fonteBehera, M. K., A. Sharma, S. Dutta, S. Sharma, P. K. Julka, G. K. Rath, W. J. Kil et al. "RADIATION THERAPY". Neuro-Oncology 13, suppl 3 (21 de outubro de 2011): iii127—iii133. http://dx.doi.org/10.1093/neuonc/nor160.
Texto completo da fonteAnwar, M., J. Lupo, A. Molinaro, J. Clarke, N. Butowski, M. Prados, S. Chang et al. "RADIATION THERAPY". Neuro-Oncology 15, suppl 3 (1 de novembro de 2013): iii178—iii188. http://dx.doi.org/10.1093/neuonc/not187.
Texto completo da fonteJeremic, Branislav. "Radiation therapy". Hematology/Oncology Clinics of North America 18, n.º 1 (fevereiro de 2004): 1–12. http://dx.doi.org/10.1016/s0889-8588(03)00143-6.
Texto completo da fonteTeses / dissertações sobre o assunto "Radiation therapy"
Crosbie, Jeffrey. "Synchrotron microbeam radiation therapy". Monash University. Faculty of Science. School of Physics, 2008. http://arrow.monash.edu.au/hdl/1959.1/64948.
Texto completo da fonteSkiöld, Sara. "Radiation induced biomarkers of individual sensitivity to radiation therapy". Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97123.
Texto completo da fonteAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Bergh, Alphonsus Cornelis Maria van den. "Radiation therapy in pituitary adenomas". [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.
Texto completo da fonteFlejmer, Anna M. "Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications". Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.
Texto completo da fonteFitzgerald, Rhys J. "A comparison of volumetric modulated arc therapy (VMAT), intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3DCRT) for stereotactic ablative radiation therapy (SABR) for early stage lung cancer". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99826/4/Rhys_Fitzgerald_Thesis.pdf.
Texto completo da fonteEngelbeen, Céline. "The segmentation problem in radiation therapy". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210107.
Texto completo da fonteMathematically, the segmentation problem amounts to decomposing a given nonnegative integer matrix A into a nonnegative integer linear combination of some binary matrices. These matrices have to respect the consecutive ones property. In clinical applications several constraints may arise that reduce the set of binary matrices which respect the consecutive ones property that we can use. We study some of them, as the interleaf distance constraint, the interleaf motion constraint, the tongue-and-groove constraint and the minimum separation constraint.
We consider here different versions of the segmentation problem with different objective functions. Hence we deal with the beam-on time problem in order to minimize the total time during which the patient is irradiated. We study this problem under the interleaf distance and the interleaf motion constraints. We consider as well this last problem under the tongue-and-groove constraint in the binary case. We also take into account the cardinality and the lex-min problem. Finally, we present some results for the approximation problem.
/Le problème de segmentation intervient lors de l'élaboration d'un plan de radiothérapie. Après que le médecin ait localisé la tumeur ainsi que les organes se situant à proximité de celle-ci, il doit aussi déterminer les différents dosages qui devront être délivrés. Il détermine alors une borne inférieure sur le dosage que doit recevoir la tumeur afin d'en avoir un contrôle satisfaisant, et des bornes supérieures sur les dosages des différents organes situés dans le champ. Afin de respecter au mieux ces bornes, le plan de radiothérapie doit être préparé de manière minutieuse. Nous nous intéressons à l'une des étapes à réaliser lors de la détermination de ce plan: l'étape de segmentation.
Mathématiquement, cette étape consiste à décomposer une matrice entière et positive donnée en une combinaison positive entière linéaire de certaines matrices binaires. Ces matrices binaires doivent satisfaire la contrainte des uns consécutifs (cette contrainte impose que les uns de ces matrices soient regroupés en un seul bloc sur chaque ligne). Dans les applications cliniques, certaines contraintes supplémentaires peuvent restreindre l'ensemble des matrices binaires ayant les uns consécutifs (matrices 1C) que l'on peut utiliser. Nous en avons étudié certaines d'entre elles comme celle de la contrainte de chariots, la contrainte d'interdiciton de chevauchements, la contrainte tongue-and-groove et la contrainte de séparation minimum.
Le premier problème auquel nous nous intéressons est de trouver une décomposition de la matrice donnée qui minimise la somme des coefficients des matrices binaires. Nous avons développé des algorithmes polynomiaux qui résolvent ce problème sous la contrainte de chariots et/ou la contrainte d'interdiction de chevauchements. De plus, nous avons pu déterminer que, si la matrice donnée est une matrice binaire, on peut trouver en temps polynomial une telle décomposition sous la contrainte tongue-and-groove.
Afin de diminuer le temps de la séance de radiothérapie, il peut être désirable de minimiser le nombre de matrices 1C utilisées dans la décomposition (en ayant pris soin de préalablement minimiser la somme des coefficients ou non). Nous faisons une étude de ce problème dans différents cas particuliers (la matrice donnée n'est constituée que d'une colonne, ou d'une ligne, ou la plus grande entrée de celle-ci est bornée par une constante). Nous présentons de nouvelles bornes inférieures sur le nombre de matrices 1C ainsi que de nouvelles heuristiques.
Finalement, nous terminons par étudier le cas où l'ensemble des matrices 1C ne nous permet pas de décomposer exactement la matrice donnée. Le but est alors de touver une matrice décomposable qui soit aussi proche que possible de la matrice donnée. Après avoir examiné certains cas polynomiaux nous prouvons que le cas général est difficile à approximer avec une erreur additive de O(mn) où m et n représentent les dimensions de la matrice donnée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Chan, Kin Wa (Karl), University of Western Sydney, of Science Technology and Environment College e School of Computing and Information Technology. "Lateral electron disequilibrium in radiation therapy". THESIS_CSTE_CIT_Chan_K.xml, 2002. http://handle.uws.edu.au:8081/1959.7/538.
Texto completo da fonteMaster of Science (Hons)
Chan, Kin Wa. "Lateral electron disequilibrium in radiation therapy /". View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.164802/index.html.
Texto completo da fonte"A thesis submitted in fulfillment of the requirements for the Degree of Master of Science (Honours) in Physics at the University of Western Sydney" "September 2002" "Kin Wa (Karl) Chan of Medical Physics Department of Westmead Hospital and the University of Western Sydney"-- t.p. Bibliography: leaves 100-105.
Ranggård, Nina. "Optimizing Conformity inIntensity Modulated Radiation Therapy". Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147356.
Texto completo da fonteChan, Timothy Ching-Yee. "Optimization under uncertainty in radiation therapy". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40302.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-182).
In the context of patient care for life-threatening illnesses, the presence of uncertainty may compromise the quality of a treatment. In this thesis, we investigate robust approaches to managing uncertainty in radiation therapy treatments for cancer. In the first part of the thesis, we study the effect of breathing motion uncertainty on intensity-modulated radiation therapy treatments of a lung tumor. We construct a robust framework that generalizes current mathematical programming formulations that account for motion. This framework gives insight into the trade-off between sparing the healthy tissues and ensuring that the tumor receives sufficient dose. With this trade-off in mind, we show that our robust solution outperforms a nominal (no uncertainty) solution and a margin (worst-case) solution on a clinical case. Next, we perform an in-depth study into the structure of different intensity maps that were witnessed in the first part of the thesis. We consider parameterized intensity maps and investigate their ability to deliver a sufficient dose to the tumor in the presence of motion that follows a Gaussian distribution. We characterize the structure of optimal intensity maps in terms of certain conditions on the problem parameters.
(cont.) Finally, in the last part of the thesis, we study intensity-modulated proton therapy under uncertainty in the location of maximum dose deposited by the beamlets of radiation. We provide a robust formulation for the optimization of proton-based treatments and show that it outperforms traditional formulations in the face of uncertainty. In our computational experiments, we see evidence that optimal robust solutions use the physical characteristics of the proton beam to create dose distributions that are far less sensitive to the underlying uncertainty.
by Timothy Ching-Yee Chan.
Ph.D.
Livros sobre o assunto "Radiation therapy"
Smith, Alfred R., ed. Radiation Therapy Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03107-0.
Texto completo da fonteViswanathan, Akila N., Christian Kirisits, Beth E. Erickson e Richard Pötter, eds. Gynecologic Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68958-4.
Texto completo da fonteSauer, Rolf, ed. Interventional Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84163-7.
Texto completo da fonteBentel, Gunilla C. Radiation therapy planning. 2a ed. New York, NY: McGraw-Hill, 1996.
Encontre o texto completo da fonteD, Altschuler M., e Smith Alfred R, eds. Radiation therapy physics. Berlin: Springer-Verlag, 1995.
Encontre o texto completo da fonteS, Ibbott Geoffrey, e Hendee Eric G, eds. Radiation therapy physics. 3a ed. Hoboken, N.J: J. Wiley, 2005.
Encontre o texto completo da fonteS, Ibbott Geoffrey, ed. Radiation therapy physics. 2a ed. St. Louis: Mosby, 1996.
Encontre o texto completo da fonteBentel, Gunilla Carleson. Radiation therapy planning. 2a ed. New York: McGraw-Hill, Health Professions Division, 1996.
Encontre o texto completo da fonteR, Dobelbower Ralph, e Abe Mitsuyuki 1932-, eds. Intraoperative radiation therapy. Boca Raton, Fla: CRC Press, 1989.
Encontre o texto completo da fonteCukier, Daniel. Coping with radiation therapy. Los Angeles: Lowell House, 2001.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Radiation therapy"
Rimner, Andreas. "Radiation Therapy". In Caring for Patients with Mesothelioma: Principles and Guidelines, 47–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96244-3_4.
Texto completo da fonteMolina, Kristine M., Kristine M. Molina, Heather Honoré Goltz, Marc A. Kowalkouski, Stacey L. Hart, David Latini, J. Rick Turner et al. "Radiation Therapy". In Encyclopedia of Behavioral Medicine, 1614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_101431.
Texto completo da fonteIto, Yoshinori. "Radiation Therapy". In Esophageal Squamous Cell Carcinoma, 227–49. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54977-2_13.
Texto completo da fonteBush, R. S. "Radiation Therapy". In Ovarian Cancer, 74–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69695-4_7.
Texto completo da fonteBarrett, A., e S. S. Donaldson. "Radiation Therapy". In Cancer in Children, 42–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84722-6_5.
Texto completo da fonteRobbins, Jared R., John Maclou Longo e Michael Straza. "Radiation Therapy". In Cancer Regional Therapy, 461–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28891-4_37.
Texto completo da fonteBahr, Benjamin, Boris Lemmer e Rina Piccolo. "Radiation Therapy". In Quirky Quarks, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_64.
Texto completo da fonteBryant, Curtis, e William M. Mendenhall. "Radiation Therapy". In Juvenile Angiofibroma, 225–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45343-9_18.
Texto completo da fonteGoltra, Peter S. "Radiation Therapy". In Medcin, 690. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2286-6_85.
Texto completo da fonteBambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore e Girolamo Spagnoletti. "Radiation Therapy". In Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Radiation therapy"
Laissue, Jean A., Nadia Lyubimova, Hans-Peter Wagner, David W. Archer, Daniel N. Slatkin, Marco Di Michiel, Christian Nemoz et al. "Microbeam radiation therapy". In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, editado por H. Bradford Barber e Hans Roehrig. SPIE, 1999. http://dx.doi.org/10.1117/12.368185.
Texto completo da fonteMason, Suzie, Yiannis Roussakis, Rongxiao Zhang, Geoff Heyes, Gareth Webster, Stuart Green, Brian Pogue e Hamid Dehghani. "Cherenkov Radiation Portal Imaging during Photon Radiotherapy". In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.41.
Texto completo da fonte"MODELING INTERNAL RADIATION THERAPY". In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003172202280233.
Texto completo da fonteChirkova, I. N., M. N. Petkevich e T. S. Chikova. "MATRIX IONIZING RADIATION DETECTORS USED IN RADIATION THERAPY". In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-230-233.
Texto completo da fonteGarcia, J. F., K. Kaushal e K. Melamed. "Hyperacute Radiation Recall Pneumonitis Induced by Radiation Therapy". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5709.
Texto completo da fonteParzyan, G. R., e A. V. Geinits. "Treatment of acute pancreatitis with mexidol and low-intensity laser radiation". In Low-Level Laser Therapy, editado por Tatiana I. Solovieva. SPIE, 2001. http://dx.doi.org/10.1117/12.425521.
Texto completo da fonteSuárez, Martín. "Conformal Radiation Therapy, Treatment Planning". In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1512036.
Texto completo da fonteZhou, Jie, Chaohui Zhang, Dong Zhou e Hui Zhang. "Multileaf collimator for radiation therapy". In International Conference on Medical Engineering and Bioinformatics. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/meb140521.
Texto completo da fonteSuárez, Martín, Luis Manuel Montaño Zentina e Gerardo Herrera Corral. "Conformai Radiation Therapy, Treatment Planning". In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3682844.
Texto completo da fonteMaleki, T., e B. Ziaie. "Microsystems technology in radiation therapy". In 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5626340.
Texto completo da fonteRelatórios de organizações sobre o assunto "Radiation therapy"
Garsa, Adam, Julie K. Jang, Sangita Baxi, Christine Chen, Olamigoke Akinniranye, Owen Hall, Jody Larkin, Aneesa Motala, Sydne Newberry e Susanne Hempel. Radiation Therapy for Brain Metasases. Agency for Healthcare Research and Quality (AHRQ), junho de 2021. http://dx.doi.org/10.23970/ahrqepccer242.
Texto completo da fonteMacdonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2014. http://dx.doi.org/10.21236/ada612050.
Texto completo da fonteHalligan, John, Stephanie Ninneman e Michael Brown. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2010. http://dx.doi.org/10.21236/ada539130.
Texto completo da fonteMacDonald, Dusten, e Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada567268.
Texto completo da fonteMacdonald, Dusten, e Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada590464.
Texto completo da fonteMacDonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2011. http://dx.doi.org/10.21236/ada554234.
Texto completo da fonteSkelly, Andrea C., Eric Chang, Jessica Bordley, Erika D. Brodt, Shelley Selph, Rongwei Fu, Rebecca Holmes et al. Radiation Therapy for Metastatic Bone Disease: Effectiveness and Harms. Agency for Healthcare Research and Quality (AHRQ), agosto de 2023. http://dx.doi.org/10.23970/ahrqepccer265.
Texto completo da fonteIpe, Nisy E. Neutron Measurements for Intensity Modulated Radiation Therapy. Office of Scientific and Technical Information (OSTI), abril de 2000. http://dx.doi.org/10.2172/763769.
Texto completo da fonteO'Brien, Robert. Radiation Therapy and Dosing Material Transport Methodology. Office of Scientific and Technical Information (OSTI), janeiro de 2017. http://dx.doi.org/10.2172/1755852.
Texto completo da fonteSkliar, Mikhail. Oxygenation-Enhanced Radiation Therapy of Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2011. http://dx.doi.org/10.21236/ada558802.
Texto completo da fonte