Artigos de revistas sobre o tema "Radiation interception"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Radiation interception".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Groot, Arthur. "A model to estimate light interception by tree crowns, applied to black spruce". Canadian Journal of Forest Research 34, n.º 4 (1 de abril de 2004): 788–99. http://dx.doi.org/10.1139/x03-242.
Texto completo da fonteSteven, M. D., P. V. Biscoe, K. W. Jaggard e J. Paruntu. "Foliage cover and radiation interception". Field Crops Research 13 (janeiro de 1986): 75–87. http://dx.doi.org/10.1016/0378-4290(86)90012-2.
Texto completo da fonteA. K. MISHRA, PADMAKAR TRIPATHI, R. K. PAL e S. R. MISHRA. "Light interception and radiation use efficiency of wheat varieties as influenced by number of irrigations". Journal of Agrometeorology 11, n.º 2 (1 de dezembro de 2009): 140–43. http://dx.doi.org/10.54386/jam.v11i2.1240.
Texto completo da fonteJ. S. BRAR, J. S. BAL e SOM PAL SINGH. "Radiant energy distribution in guava (Psidium guajava L.) plants at different spacings". Journal of Agrometeorology 11, n.º 2 (1 de dezembro de 2009): 135–39. http://dx.doi.org/10.54386/jam.v11i2.1239.
Texto completo da fonteOlesen, Trevor, Stephen Morris e Lisa McFadyen. "Modelling the interception of photosynthetically active radiation by evergreen subtropical hedgerows". Australian Journal of Agricultural Research 58, n.º 3 (2007): 215. http://dx.doi.org/10.1071/ar06110.
Texto completo da fonteHeath, M. C., e P. D. Hebblethwaite. "Precision drilling combining peas (Pisum sativum L.) of contrasting leaf types at varying densities". Journal of Agricultural Science 108, n.º 2 (abril de 1987): 425–30. http://dx.doi.org/10.1017/s0021859600079466.
Texto completo da fonteCannell, M. G. R., R. Milne, L. J. Sheppard e M. H. Unsworth. "Radiation Interception and Productivity of Willow". Journal of Applied Ecology 24, n.º 1 (abril de 1987): 261. http://dx.doi.org/10.2307/2403803.
Texto completo da fonteZeng, Wenzhi, Yuchao Lu, Amit Kumar Srivastava, Thomas Gaiser e Jiesheng Huang. "Parameter Sensitivity and Uncertainty of Radiation Interception Models for Intercropping System". Ecological Chemistry and Engineering S 27, n.º 3 (1 de setembro de 2020): 437–56. http://dx.doi.org/10.2478/eces-2020-0028.
Texto completo da fonteBennett, J. M., T. R. Sinclair, Li Ma e K. J. Boote. "Single Leaf Carbon Exchange and Canopy Radiation Use Efficiency of Four Peanut Cultivars1". Peanut Science 20, n.º 1 (1 de janeiro de 1993): 1–5. http://dx.doi.org/10.3146/i0095-3679-20-1-1.
Texto completo da fonteConnor, David J., Ana Centeno e María Gómez-del-Campo. "Yield determination in olive hedgerow orchards. II. Analysis of radiation and fruiting profiles". Crop and Pasture Science 60, n.º 5 (2009): 443. http://dx.doi.org/10.1071/cp08253.
Texto completo da fonteLi, Lin, Rosalind A. Bueckert, Yantai Gan e Tom Warkentin. "Light interception and radiation use efficiency of fern- and unifoliate-leaf chickpea cultivars". Canadian Journal of Plant Science 88, n.º 6 (1 de novembro de 2008): 1025–34. http://dx.doi.org/10.4141/cjps07056.
Texto completo da fonteZhu, Binglin, Fusang Liu, Ziwen Xie, Yan Guo, Baoguo Li e Yuntao Ma. "Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season". Annals of Botany 126, n.º 4 (17 de março de 2020): 701–12. http://dx.doi.org/10.1093/aob/mcaa046.
Texto completo da fonteWallace, J. S. "Evaporation and radiation interception by neighbouring plants". Quarterly Journal of the Royal Meteorological Society 123, n.º 543 (outubro de 1997): 1885–905. http://dx.doi.org/10.1002/qj.49712354306.
Texto completo da fonteGoyne, PJ, SP Milroy, JM Lilley e JM Hare. "Radiation interception, radiation use efficiency and growth of barley cultivars". Australian Journal of Agricultural Research 44, n.º 6 (1993): 1351. http://dx.doi.org/10.1071/ar9931351.
Texto completo da fonteBélanger, G., e J. E. Richards. "Growth analysis of timothy cultivars differing in maturity". Canadian Journal of Plant Science 75, n.º 3 (1 de julho de 1995): 643–48. http://dx.doi.org/10.4141/cjps95-109.
Texto completo da fonteYoon, Hyo In, Hyun Young Kim, Jaewoo Kim, Myung-Min Oh e Jung Eek Son. "Quantitative Analysis of UV-B Radiation Interception in 3D Plant Structures and Intraindividual Distribution of Phenolic Contents". International Journal of Molecular Sciences 22, n.º 5 (7 de março de 2021): 2701. http://dx.doi.org/10.3390/ijms22052701.
Texto completo da fonteVilla, Bruna de, Mirta Teresinha Petry, Maicon Sérgio Nascimento dos Santos, Juliano Dalcin Martins, Isabel Lago, Murilo Brum de Moura, Henrique Schaf Eggers et al. "Effects of Minimum and Maximum Limits of Solar Radiation and Its Temporal and Geographic Interactions". Journal of Agricultural Science 14, n.º 8 (15 de julho de 2022): 173. http://dx.doi.org/10.5539/jas.v14n8p173.
Texto completo da fonteFochesatto, Elizandro, Astor Henrique Nied, Homero Bergamaschi, Genei Antonio Dalmago, Daniele Gutterres Pinto, Samuel Kovaleski, Gilberto Roca da Cunha e Jorge Alberto Gouvea. "Interception of solar radiation by the productive structures of spring canola hybrids". Ciência Rural 46, n.º 10 (7 de julho de 2016): 1790–96. http://dx.doi.org/10.1590/0103-8478cr20151571.
Texto completo da fonteDong, Liming, Yuchao Lu, Guoqing Lei, Jiesheng Huang e Wenzhi Zeng. "Improve the Simulation of Radiation Interception and Distribution of the Strip-Intercropping System by Considering the Geometric Light Transmission". Agronomy 14, n.º 1 (22 de janeiro de 2024): 227. http://dx.doi.org/10.3390/agronomy14010227.
Texto completo da fonteBauerle, William L., e Joseph D. Bowden. "A Fiberoptic-based System for Integrating Photosynthetically Active Radiation in Plant Canopies". HortScience 39, n.º 5 (agosto de 2004): 1027–29. http://dx.doi.org/10.21273/hortsci.39.5.1027.
Texto completo da fonteT, Govindaraj, N. Maragatham, S. P. Ramanathan, V. Geethalakshmi e M. K. Kalarani. "Light interception and radiation use efficiency (RUE) in maize (Zea mays. L) intercropping with greengram (Vigna radiata L.)". Journal of Applied and Natural Science 15, n.º 3 (19 de setembro de 2023): 1044–50. http://dx.doi.org/10.31018/jans.v15i3.4751.
Texto completo da fonteMahakosee, Supattra, Sanun Jogloy, Nimitr Vorasoot, Piyada Theerakulpisut, Banyong Toomsan, Carl Corley Holbrook, Craig K. Kvien e Poramate Banterng. "Light Interception and Radiation Use Efficiency of Three Cassava Genotypes with Different Plant Types and Seasonal Variations". Agronomy 12, n.º 11 (18 de novembro de 2022): 2888. http://dx.doi.org/10.3390/agronomy12112888.
Texto completo da fonte., Lanuakum, Graceli I. Yepthomi e C. S. Maiti. "Effect of Radiation Interception and Canopy Temperature on Growth, Yield and Quality in Banana Cv. Grande Naine (AAA) under Different Planting Densities". Journal of Horticultural Sciences 10, n.º 2 (31 de dezembro de 2015): 172–76. http://dx.doi.org/10.24154/jhs.v10i2.125.
Texto completo da fonteLampinen, Bruce D., Vasu Udompetaikul, Gregory T. Browne, Samuel G. Metcalf, William L. Stewart, Loreto Contador, Claudia Negrón e Shrini K. Upadhyaya. "A Mobile Platform for Measuring Canopy Photosynthetically Active Radiation Interception in Orchard Systems". HortTechnology 22, n.º 2 (abril de 2012): 237–44. http://dx.doi.org/10.21273/horttech.22.2.237.
Texto completo da fonteGong, Hong Wei, Zhong Yuan Wang, Xuan Yan e Huan Fu. "Theory of Solar Hot Water System Construction Application Engineering Evaluation Field Test Method - The Amount of Solar Irradiance Intercept Method". Applied Mechanics and Materials 737 (março de 2015): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amm.737.71.
Texto completo da fonteGroot, Arthur. "Biases in LI-COR Plant Canopy Analyzer estimates of seasonal light interception by black spruce and trembling aspen canopies". Canadian Journal of Forest Research 35, n.º 11 (1 de novembro de 2005): 2664–70. http://dx.doi.org/10.1139/x05-184.
Texto completo da fonteDaniells, J. W. "MEASUREMENT OF SOLAR RADIATION INTERCEPTION BY TREE CROPS". Acta Horticulturae, n.º 175 (março de 1986): 255–56. http://dx.doi.org/10.17660/actahortic.1986.175.37.
Texto completo da fonteDíaz-Espejo, A., J. E. Fernández, P. J. Durán, I. F. Girón, H. Sinoquet, G. Sonohat, J. Phattaralerphong et al. "CANOPY ARCHITECTURE AND RADIATION INTERCEPTION MEASUREMENTS IN OLIVE". Acta Horticulturae, n.º 791 (junho de 2008): 531–38. http://dx.doi.org/10.17660/actahortic.2008.791.82.
Texto completo da fonteWhelan, H. G., e R. E. Gaunt. "Disease effects on radiation interception in barley crops". Proceedings of the New Zealand Weed and Pest Control Conference 42 (8 de janeiro de 1989): 217–20. http://dx.doi.org/10.30843/nzpp.1989.42.10955.
Texto completo da fonteManrique, L. A., J. R. Kinry, T. Hodges e D. S. Axness. "Dry Matter Production and Radiation Interception of Potato". Crop Science 31, n.º 4 (julho de 1991): 1044–49. http://dx.doi.org/10.2135/cropsci1991.0011183x003100040040x.
Texto completo da fontePang, Ce, Gan-lin Shan, Wei-ning Ma e Gong-guo Xu. "Sensor radiation interception risk control in target tracking". Defence Technology 16, n.º 3 (junho de 2020): 695–704. http://dx.doi.org/10.1016/j.dt.2019.10.014.
Texto completo da fonteZhang, Yingyu, Juan Yang, Marinus van Haaften, Linyi Li, Shenglian Lu, Weiliang Wen, Xiuguo Zheng, Jian Pan e Tingting Qian. "Interactions between Diffuse Light and Cucumber (Cucumis sativus L.) Canopy Structure, Simulations of Light Interception in Virtual Canopies". Agronomy 12, n.º 3 (28 de fevereiro de 2022): 602. http://dx.doi.org/10.3390/agronomy12030602.
Texto completo da fontePan, Yonghui, Shuai Gao, Kailiu Xie, Zhifeng Lu, Xusheng Meng, Shiyu Wang, Jianwei Lu e Shiwei Guo. "Higher Radiation Use Efficiency Produces Greater Biomass Before Heading and Grain Yield in Super Hybrid Rice". Agronomy 10, n.º 2 (2 de fevereiro de 2020): 209. http://dx.doi.org/10.3390/agronomy10020209.
Texto completo da fonteAl-hazmi, Manea H., Alan N. Lakso e Steven S. Denning. "EFFECTS OF TRELLIS FORM ON RADIATION INTERCEPTION WATER USE AND PHOTOSYNTHESIS IN GRAPEVINES". HortScience 28, n.º 5 (maio de 1993): 570c—570. http://dx.doi.org/10.21273/hortsci.28.5.570c.
Texto completo da fonteMcCrady, R. L., e E. J. Jokela. "Canopy Dynamics, Light Interception, and Radiation Use Efficiency of Selected Loblolly Pine Families". Forest Science 44, n.º 1 (1 de fevereiro de 1998): 64–72. http://dx.doi.org/10.1093/forestscience/44.1.64.
Texto completo da fonteHughes, G., J. D. H. Keatinge, P. J. M. Cooper e N. F. Dee. "Solar radiation interception and utilization by chickpea (Cicer arietinum L.) crops in northern Syria". Journal of Agricultural Science 108, n.º 2 (abril de 1987): 419–24. http://dx.doi.org/10.1017/s0021859600079454.
Texto completo da fonteOhashi, Yuta, Misato Murai, Yasuhiro Ishigami e Eiji Goto. "Light-Intercepting Characteristics and Growth of Tomatoes Cultivated in a Greenhouse Using a Movable Bench System". Horticulturae 8, n.º 1 (9 de janeiro de 2022): 60. http://dx.doi.org/10.3390/horticulturae8010060.
Texto completo da fonteWu, Zijian, Fei Wang e Jianjiang Zhou. "Netted Radar Tracking with Multiple Simultaneous Transmissions against Combined PDS Interception". Journal of Sensors 2020 (4 de janeiro de 2020): 1–12. http://dx.doi.org/10.1155/2020/5932539.
Texto completo da fonteRighi, Ciro Abbud, Marcos Silveira Bernardes, Aureny Maria Pereira Lunz, Carlos Rodrigues Pereira, Durval Dourado Neto e José Laercio Favarin. "Measurement and simulation of solar radiation availability in relation to the growth of coffee plants in an agroforestry system with rubber trees". Revista Árvore 31, n.º 2 (abril de 2007): 195–207. http://dx.doi.org/10.1590/s0100-67622007000200002.
Texto completo da fonteAugspurger, Carol K., e Carl F. Salk. "Understory plants evade shading in a temperate deciduous forest amid climate variability by shifting phenology in synchrony with canopy trees". PLOS ONE 19, n.º 6 (26 de junho de 2024): e0306023. http://dx.doi.org/10.1371/journal.pone.0306023.
Texto completo da fonteWünsche, Jens N., Alan N. Lakso e Terence L. Robinson. "Comparison of Four Methods for Estimating Total Light Interception by Apple Trees of Varying Forms". HortScience 30, n.º 2 (abril de 1995): 272–76. http://dx.doi.org/10.21273/hortsci.30.2.272.
Texto completo da fonteElhakeem, Ali, Wopke van der Werf e Lammert Bastiaans. "Radiation interception and radiation use efficiency in mixtures of winter cover crops". Field Crops Research 264 (maio de 2021): 108034. http://dx.doi.org/10.1016/j.fcr.2020.108034.
Texto completo da fonteLigot, Gauthier, Aitor Ameztegui, Benoît Courbaud, Lluís Coll e Dan Kneeshaw. "Tree light capture and spatial variability of understory light increase with species mixing and tree size heterogeneity". Canadian Journal of Forest Research 46, n.º 7 (julho de 2016): 968–77. http://dx.doi.org/10.1139/cjfr-2016-0061.
Texto completo da fonteMubarak, Syahrun, Impron , e Dan Tania June. "Efisiensi Penggunaan Radiasi Matahari dan Respon Tanaman Kedelai (Glycine max L.) terhadap Penggunaan Mulsa Reflektif". Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 46, n.º 3 (25 de janeiro de 2019): 247–53. http://dx.doi.org/10.24831/jai.v46i3.18220.
Texto completo da fonteBurstall, Lindsay, e P. M. Harris. "The physiological basis for mixing varieties and seed ‘ages’ in potato crops". Journal of Agricultural Science 106, n.º 2 (abril de 1986): 411–18. http://dx.doi.org/10.1017/s0021859600064029.
Texto completo da fontePrihar, S. S., V. K. Arora, G. Singh e R. Singh. "Estimating Potato Tuber Yield in a Sub-tropical Environment with Simple Radiation-Based Models". Experimental Agriculture 31, n.º 1 (janeiro de 1995): 65–73. http://dx.doi.org/10.1017/s0014479700025023.
Texto completo da fonteLeach, GJ, e DF Beech. "Response of chickpea accessions to row spacing and plant density on a vertisol on the Darling Downs, south-eastern Queensland. 2. Radiation interception and water use". Australian Journal of Experimental Agriculture 28, n.º 3 (1988): 377. http://dx.doi.org/10.1071/ea9880377.
Texto completo da fonteRobinson, Terence L., e Alan N. Lakso. "Bases of Yield and Production Efficiency in Apple Orchard Systems". Journal of the American Society for Horticultural Science 116, n.º 2 (março de 1991): 188–94. http://dx.doi.org/10.21273/jashs.116.2.188.
Texto completo da fonteBergamaschi, Homero, Genei Antonio Dalmago, João Ito Bergonci, Cleusa Adriane Menegassi Bianchi Krüger, Bruna Maria Machado Heckler e Flavia Comiran. "Intercepted solar radiation by maize crops subjected to different tillage systems and water availability levels". Pesquisa Agropecuária Brasileira 45, n.º 12 (dezembro de 2010): 1331–41. http://dx.doi.org/10.1590/s0100-204x2010001200001.
Texto completo da fonteHerrero, Alicia, Santiago Moll, José-A. Moraño, David Vázquez e Erika Vega. "Iterative Lambert’s Trajectory Optimization for Extrasolar Bodies Interception". Aerospace 8, n.º 12 (27 de novembro de 2021): 366. http://dx.doi.org/10.3390/aerospace8120366.
Texto completo da fonte