Literatura científica selecionada sobre o tema "Radiation dosimetry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Radiation dosimetry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Radiation dosimetry"
Bhatt, B. C., e M. S. Kulkarni. "Thermoluminescent Phosphors for Radiation Dosimetry". Defect and Diffusion Forum 347 (dezembro de 2013): 179–227. http://dx.doi.org/10.4028/www.scientific.net/ddf.347.179.
Texto completo da fonteTitov, N. V. "Methodology for Measuring the Dose Rate of Pulsed Bremsstrahlung Radiation using Gamma Radiation Dosimeters with Geiger-Muller Counter". Journal of the Russian Universities. Radioelectronics 27, n.º 3 (1 de julho de 2024): 97–107. http://dx.doi.org/10.32603/1993-8985-2024-27-3-97-107.
Texto completo da fonteJain, Gourav K., Arun Chougule, Ananth Kaliyamoorthy e Suresh K. Akula. "Study of dosimetric characteristics of a commercial optically stimulated luminescence system". Journal of Radiotherapy in Practice 16, n.º 4 (31 de maio de 2017): 461–75. http://dx.doi.org/10.1017/s1460396917000346.
Texto completo da fonteWest, William Geoffrey, e Kimberlee Jane Kearfott. "Optically Stimulated Luminescence Dosimetry: An Introduction". Solid State Phenomena 238 (agosto de 2015): 161–73. http://dx.doi.org/10.4028/www.scientific.net/ssp.238.161.
Texto completo da fonteGafar, Sameh Mohamed, e Nehad Magdy Abdel-Kader. "Radiation induced degradation of murexide dye in two media for possible use in dosimetric applications". Pigment & Resin Technology 48, n.º 6 (4 de novembro de 2019): 540–46. http://dx.doi.org/10.1108/prt-02-2019-0014.
Texto completo da fonteNoorin, Eftekhar Sadat, Shahzad Feizi e Shahram Moradi Dehaghi. "Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects". Radiochimica Acta 107, n.º 3 (26 de março de 2019): 271–78. http://dx.doi.org/10.1515/ract-2018-3055.
Texto completo da fonteWickramasinghe, Sachini Udara, Vijitha Ramanathan e Sivananthan Sarasanandarajah. "Evaluating Occupational Radiation Exposure in Interventional Cardiology: An Investigation into Estimating Effective Dose". KDU Journal of Multidisciplinary Studies 5, n.º 2 (28 de novembro de 2023): 157–65. http://dx.doi.org/10.4038/kjms.v5i2.87.
Texto completo da fonteVargas-Segura, Walter, e Laura Rojas-Rojas. "Implementation of a high dose routine dosimetry in a self-shielded irradiator". UNED Research Journal 16 (1 de julho de 2024): e5229. http://dx.doi.org/10.22458/urj.v16i1.5229.
Texto completo da fonteJung, Aleksandra, e Katarzyna Matusiak. "New trends in clinical and retrospective dosimetry". Bio-Algorithms and Med-Systems 19, n.º 1 (31 de dezembro de 2023): 69–73. http://dx.doi.org/10.5604/01.3001.0054.1972.
Texto completo da fontePrestopino, Giuseppe, Enrico Santoni, Claudio Verona e Gianluca Verona Rinati. "Diamond Based Schottky Photodiode for Radiation Therapy In Vivo Dosimetry". Materials Science Forum 879 (novembro de 2016): 95–100. http://dx.doi.org/10.4028/www.scientific.net/msf.879.95.
Texto completo da fonteTeses / dissertações sobre o assunto "Radiation dosimetry"
Samei, Ehsan. "Theoretical study of various thermoluminescent dosimeters heating schemes". Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16481.
Texto completo da fonteOlsson, Sara. "ESR dosimetry in the radiation therapy dose range : development of dosimetry systems and sensitive dosimeter materials /". Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/med701s.pdf.
Texto completo da fonteLim, Wee Kuan. "One-dimensional position-sensitive superheated-liquid-droplet in-phantom neutron dosimeter". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15893.
Texto completo da fonteGotz, Malte. "Dosimetry of Highly Pulsed Radiation Fields". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234926.
Texto completo da fonteSynchrocyclotrons and laser based particle accelerators, developed with the goal to enable more compact particle therapy facilities, may bring highly pulsed radiation field to external beam radiation therapy. In addition, such highly pulsed fields may be desirable due to their potential clinical benefits regarding better healthy tissue sparing or improved gating for moving tumors. However, they pose new challenges for dosimetry, the corner stone of any application of ionizing radiation. These challenges affect both clinical and radiation protection dosimetry. Air-filled ionization chambers, which dominate clinical dosimetry, face the problem of increased signal loss due to volume recombination when a highly pulsed field liberates a large amount of charge in a short time in the chamber. While well established descriptions exist for this volume recombination for the moderately pulsed fields in current use (Boag's formulas), the assumptions on which those descriptions are based will most likely not hold in the prospective, highly pulsed fields of future accelerators. Furthermore, ambient dose rate meters used in radiation protection dosimetry as survey meters or fixed installations are generally only tested for continuous fields, casting doubt on their suitability to measure pulsed fields. This thesis investigated both these aspects of dosimetry - clinical as well as radiation protection - to enable the medical application of highly pulsed radiation fields. For a comprehensive understanding, experimental investigations were coupled with theoretical considerations and developments. Pulsed fields, varying in both dose-per-pulse and pulse duration over a wide range, were generated with the ELBE research accelerator, providing a 20 MeV pulsed electron beam. Ionization chambers for clinical dosimetry were investigated using this electron beam directly, with an aluminium Faraday cup providing the reference measurement. Whereas the dose rate meters were irradiated in the photon field generated from stopping the electron beam in the Faraday cup. In those measurements, the reference was calculated from the ionization chamber, then serving a an electron beam monitor, cross-calibrated to the photon field with thermoluminescent dosimeters. Three dose rate meters based on different operating principles were investigated, covering a large portion of the operating principles used in radiation protection: the ionization chamber based RamION, the proportional counter LB 1236-H10 and the scintillation detector AD-b. Regarding clinical dosimetry, measurements of two prominent ionization chamber geometries, plane-parallel (Advanced Markus chamber) and thimble type (PinPoint chamber), were performed. In addition to common air-filled chambers, chambers filled with pure nitrogen and two non-polar liquids, tetramethylsilane and isooctane, were investigated. In conjunction with the experiments, a numerical solution of the charge liberation, transport, and recombination processes in the ionization chamber was developed to calculate the volume recombination independent of the assumptions necessary to derive Boag's formulas. Most importantly, the influence of the liberated charges in the ionization chamber on the electric field, which is neglected in Boag's formulas, is included in the developed calculation. Out of the three investigated dose rate meters only the RamION could be identified as an instrument truly capable of measuring a pulsed field. The AD-b performed below expectations (principally, a scintillator is not limited in detecting pulsed radiation), which was attributed to the signal processing, emphasizing the problem of a typical black-box signal processing in commercial instruments. The LB 1236-H10, on the other hand, performed as expected of a counting detector. While this supports the recent effort to formalize these expectations and standardize testing for counting dosimeters in DIN IEC/TS 62743, it also highlights the insufficiency of counting detectors for highly pulsed fields in general and shows the need for additional normative work to establish requirements for dose rate meters not based on a counting signal (such as the RamION), for which no framework currently exists. With these results recognized by the German radiation protection commission (SSK) the first steps towards such a framework are taken. The investigation of the ionization chambers used in radiation therapy showed severe discrepancies between Boag's formulas and the experimentally observed volume recombination. Boag's formulas describe volume recombination truly correctly only in the two liquid-filled chambers. All the gas-filled chambers required the use of effective parameters, resulting in values for those parameters with little to no relation to their original meaning. Even this approach, however, failed in the case of the Advanced Markus chamber for collection voltages ≥ 300 V and beyond a dose-per-pulse of about 100 mGy. The developed numerical model enabled a much better calculation of volume recombination and allowed the identification of the root of the differences to Boag's formulas as the influence of the liberated charges on the electric field. Increased positive space charge due to increased dose-per-pulse slows the collection and reduces the fraction of fast, free electrons, which are unaffected by volume recombination. The resultant increase in the fraction of charge undergoing volume recombination, in addition to the increase in the total amount of charge, results in an increase in volume recombination with dose-per-pulse that is impossible to describe with Boag's formulas. It is particularly relevant in the case of high electric fields and small electrode distances, where the free electron fraction is large. In addition, the numerical calculation allows for arbitrary pulse durations, while Boag's formulas apply only to very short pulses. In general, the numerical calculation worked well for plane-parallel chambers, including those filled with the very diverse media of liquids, nitrogen and air. Despite its increased complexity, the thimble geometry could be implemented as well, although, in the case of the PinPoint chamber, some discrepancies to the experimental data remained, probably due to the required geometrical approximations. A possible future development of the numerical calculation would be an improved description of the voltage dependence of the volume recombination. At the moment it requires characterizing a chamber at each desired collection voltage, which could be eliminated by an improved modeling of the volume recombination's dependence on collection voltage. Nevertheless, the developed numerical calculation presents a marked improvement over Boag's formulas to describe the dose-per-pulse dependence and pulse duration dependence of volume recombination in ionization chambers, in principle enabling the application of ionization chambers in the absolute dosimetry of highly pulsed fields
Griffin, Jonathan Alexander. "Radiation Dosimetry of Irregularly Shaped Objects". Thesis, University of Canterbury. Physics and Astronomy, 2006. http://hdl.handle.net/10092/1402.
Texto completo da fonteCavan, Alicia Emily. "Digital Holographic Interferometry for Radiation Dosimetry". Thesis, University of Canterbury. Physics and Astronomy, 2015. http://hdl.handle.net/10092/10465.
Texto completo da fonteBrauer-Krisch, E. "Experimental dosimetry for Microbeam Radiation Therapy". Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1357933/.
Texto completo da fonteJones, Bernard L. "Radiation dose analysis of NPS flash X-ray facility using silicon PIN diode". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FJones%5FBernard.pdf.
Texto completo da fonteThesis advisor(s): Todd R. Weatherford, Andrew A. Parker. Includes bibliographical references (p. 39). Also available online.
Ho, Wing-kwok. "Solar ultraviolet radiation : monitoring, dosimetry and protection /". Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21583791.
Texto completo da fonteCrescenti, Remo Andrea. "Backscatter ultrasound readout of radiation-sensitive gels for radiation dosimetry". Thesis, Institute of Cancer Research (University Of London), 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511163.
Texto completo da fonteLivros sobre o assunto "Radiation dosimetry"
Orton, Colin G., ed. Radiation Dosimetry. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0.
Texto completo da fonteMcParland, Brian J. Medical Radiation Dosimetry. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5403-7.
Texto completo da fonteR, Martin Paul. Ionizing radiation dosimetry. Washington, D.C: National Institute of Standards and Technology, 1994.
Encontre o texto completo da fonteMartin, Paul R. Ionizing radiation dosimetry. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Encontre o texto completo da fonteStabin, Michael G., ed. Radiation Protection and Dosimetry. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-49983-3.
Texto completo da fonteMcParland, Brian J. Nuclear Medicine Radiation Dosimetry. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-126-2.
Texto completo da fonte1940-, Mahesh K., e Vij D. R, eds. Techniques of radiation dosimetry. New Delhi: Wiley Eastern, 1985.
Encontre o texto completo da fonteL, McLaughlin William, ed. Dosimetry for radiation processing. London: Taylor & Francis, 1989.
Encontre o texto completo da fonteGreening, J. R. Fundamentals of radiation dosimetry. 2a ed. Bristol: Hilger in collaboration with Hospital Physicists' Association, 1985.
Encontre o texto completo da fonteRajan, K. N. Govinda. Advanced medical radiation dosimetry. New Delhi: Prentice Hall of India, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Radiation dosimetry"
Cerrito, Lucio. "Dosimetry". In Radiation and Detectors, 37–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53181-6_3.
Texto completo da fonteSharma, Seema. "Radiation Dosimetry". In Practical Radiation Oncology, 21–30. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0073-2_3.
Texto completo da fonteWagner, Günther A. "Radiation Dosimetry". In Natural Science in Archaeology, 219–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03676-1_7.
Texto completo da fonteNg, Kwan Hoong, Ngie Min Ung e Robin Hill. "Radiation Dosimetry". In Problems and Solutions in Medical Physics, 69–91. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429159466-5.
Texto completo da fonteMishra, Subhalaxmi, e T. Palani Selvam. "Radiation Dosimetry". In Handbook of Metrology and Applications, 1–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-1550-5_116-1.
Texto completo da fonteMishra, Subhalaxmi, e T. Palani Selvam. "Radiation Dosimetry". In Handbook of Metrology and Applications, 2117–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2074-7_116.
Texto completo da fonteOrton, Colin G. "Bioeffect Dosimetry in Radiation Therapy". In Radiation Dosimetry, 1–71. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_1.
Texto completo da fonteAlmond, Peter R. "A Comparison of National and International Megavoltage Calibration Protocols". In Radiation Dosimetry, 73–86. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_2.
Texto completo da fonteSvensson, Hans, e Anders Brahme. "Recent Advances in Electron and Photon Dosimetry". In Radiation Dosimetry, 87–170. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_3.
Texto completo da fonteZaider, Marco, e Harald H. Rossi. "Microdosimetry and Its Application to Biological Processes". In Radiation Dosimetry, 171–242. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-0571-0_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Radiation dosimetry"
Liu, Yanping, Zhaoyang Chen, Yanwei Fan, Weizhen Ba e Shilie Pan. "A Novel Radiation Dosimetry Based on Optically Stimulated Luminescence". In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48023.
Texto completo da fonteBos, Adrie J. J., Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico e Marko Moscovitch. "Fundamentals of Radiation Dosimetry". In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576156.
Texto completo da fonteSoltani, Peter K., Charles Y. Wrigley, George M. Storti e Ramon E. Creager. "Fiber Optic Radiation Dosimetry". In OE/FIBERS '89, editado por Ramon P. DePaula e Eric Udd. SPIE, 1990. http://dx.doi.org/10.1117/12.963073.
Texto completo da fonteGreer, Peter B., Philip Vial, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico e Marko Moscovitch. "Epid Dosimetry". In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576163.
Texto completo da fontePopova, Mariia, Dmitrii Vakhnin e Igor Tyshchenko. "EPR-dosimetry of ionizing radiation". In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002913.
Texto completo da fonteMajchrowski, Andrzej. "Thermoluminescence in ionizing radiation dosimetry". In Solid State Crystals: Materials Science and Applications, editado por Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.224985.
Texto completo da fonteTriandini, Annisa Retno, e Muhammad Fathony. "Radiation Protection on Patient Dosimetry". In 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). IEEE, 2017. http://dx.doi.org/10.1109/icici-bme.2017.8537756.
Texto completo da fonteSliney, David H. "Dosimetry for ultraviolet radiation exposure of the eye". In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180811.
Texto completo da fonteO'Keeffe, S., E. Lewis, A. Santhanam, A. Winningham e J. P. Rolland. "Low dose plastic optical fibre radiation dosimeter for clinical dosimetry applications". In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398516.
Texto completo da fonteKlimov, Nikolai N., Zeeshan Ahmed, Lonnie T. Cumberland, Ileana M. Pazos, Fred Bateman, Ronald E. Tosh e Ryan Fitzgerald. "Silicon Nanophotonics Platform for Radiation Dosimetry". In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.fw5c.5.
Texto completo da fonteRelatórios de organizações sobre o assunto "Radiation dosimetry"
Valeri, C. R., e J. J. Vecchione. Radiation Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1997. http://dx.doi.org/10.21236/ada360331.
Texto completo da fonteSims, C., e R. Swaja. (Radiation dosimetry). Office of Scientific and Technical Information (OSTI), março de 1987. http://dx.doi.org/10.2172/6765798.
Texto completo da fonteKase, K. Concepts of Radiation Dosimetry. Office of Scientific and Technical Information (OSTI), junho de 2018. http://dx.doi.org/10.2172/1453910.
Texto completo da fonteHumphreys, Jimmy C., James M. Puhl, Stephen M. Seltzer, William L. McLaughlin, Vitaly Y. Nagy, Debra L. Bensen e Marlon L. Walker. Radiation processing dosimetry calibration services :. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.sp.250-45.
Texto completo da fonteMiller, Daniel W., Peter H. Bloch, John R. Cunningham, Bruce H. Curran, Geoffrey S. Ibbott, Douglas Jones, Shirley Z. Jucius, Dennis D. Leavitt, Radhe Mohan e Jan van de Geijin. Radiation Treatment Planning Dosimetry Verification. AAPM, 1995. http://dx.doi.org/10.37206/54.
Texto completo da fontePeter G. Groer. Bayesian Methods for Radiation Detection and Dosimetry. Office of Scientific and Technical Information (OSTI), setembro de 2002. http://dx.doi.org/10.2172/801527.
Texto completo da fonteGladhill, Robert L., Jeffrey Horlick e Elmer Eisenhower. The National Personnel Radiation Dosimetry Accreditation Program. Gaithersburg, MD: National Bureau of Standards, janeiro de 1986. http://dx.doi.org/10.6028/nbs.ir.86-3350.
Texto completo da fonteSwaja, R. E. Survey of international personnel radiation dosimetry programs. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/5808001.
Texto completo da fonteGreenwood, L. R., e R. T. Ratner. Neutron dosimetry and radiation damage calculations for HFBR. Office of Scientific and Technical Information (OSTI), março de 1998. http://dx.doi.org/10.2172/335413.
Texto completo da fonteHintenlang, D. E., K. Jamil e L. H. Iselin. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/6707222.
Texto completo da fonte