Artigos de revistas sobre o tema "Radar Antennas Testing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Radar Antennas Testing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wang, Bin, Shunan Wang, Dan Zeng e Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition". Electronics 11, n.º 9 (26 de abril de 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Texto completo da fonteWang, Bin, Shunan Wang, Dan Zeng e Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition". Electronics 11, n.º 9 (26 de abril de 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Texto completo da fonteWang, Bin, Shunan Wang, Dan Zeng e Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition". Electronics 11, n.º 9 (26 de abril de 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Texto completo da fonteMARUDDANI, BASO, EFRI SANDI EFRI SANDI e MUHAMMAD FADHIL NAUFAL SALAM. "Perancangan dan Optimasi Antena Vivaldi pada Sistem Radar Penembus Permukaan (Ground Penetrating Radar)". ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 7, n.º 1 (24 de janeiro de 2019): 151. http://dx.doi.org/10.26760/elkomika.v7i1.151.
Texto completo da fonteChipengo, Ushemadzoro, Peter M. Krenz e Shawn Carpenter. "From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation". Modelling and Simulation in Engineering 2018 (27 de dezembro de 2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Texto completo da fonteBernatek-Jakiel, Anita, e Marta Kondracka. "Detection of Soil Pipes Using Ground Penetrating Radar". Remote Sensing 11, n.º 16 (9 de agosto de 2019): 1864. http://dx.doi.org/10.3390/rs11161864.
Texto completo da fonteLangston, Glen. "NRAO 43-m telescope operation at 170-1700 MHz: a Bi-Static Radar Collaboration". Proceedings of the International Astronomical Union 2, n.º 14 (agosto de 2006): 367. http://dx.doi.org/10.1017/s1743921307011015.
Texto completo da fonteGalajda, Pavol, Alena Galajdova, Stanislav Slovak, Martin Pecovsky, Milos Drutarovsky, Marek Sukop e Ihab BA Samaneh. "Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments". International Journal of Advanced Robotic Systems 15, n.º 4 (1 de julho de 2018): 172988141879576. http://dx.doi.org/10.1177/1729881418795767.
Texto completo da fontePryshchenko, Oleksandr A., Vadym Plakhtii, Oleksandr M. Dumin, Gennadiy P. Pochanin, Vadym P. Ruban, Lorenzo Capineri e Fronefield Crawford. "Implementation of an Artificial Intelligence Approach to GPR Systems for Landmine Detection". Remote Sensing 14, n.º 17 (5 de setembro de 2022): 4421. http://dx.doi.org/10.3390/rs14174421.
Texto completo da fonteAjith, K. K., e Amitabha Bhattacharya. "Improving the GPR Detectability Using a Novel Loop Bowtie Antenna". Journal of Telecommunications and Information Technology, n.º 3 (2017): 9–16. http://dx.doi.org/10.26636/jtit.2017.120917.
Texto completo da fonteIonescu, Liviu, Alexandru Rusu-Casandra, Calin Bira, Alexandru Tatomirescu, Ionut Tramandan, Roberto Scagnoli, Dan Istriteanu e Andrei-Edward Popa. "Development of the Romanian Radar Sensor for Space Surveillance and Tracking Activities". Sensors 22, n.º 9 (6 de maio de 2022): 3546. http://dx.doi.org/10.3390/s22093546.
Texto completo da fonteWassie, Y., M. Crosetto, G. Luzi, O. Monserrat, A. Barra, R. Palamá, M. Cuevas-González, S. M. Mirmazloumi, P. Espín-López e B. Crippa. "ACTIVE REFLECTORS FOR INTERFEROMETRIC SAR DEFORMATION MEASUREMENT". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021 (28 de junho de 2021): 177–82. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2021-177-2021.
Texto completo da fonteChoudhary, Vipin, e Daniel Rönnow. "A Nondestructive Testing Method for the Determination of the Complex Refractive Index Using Ultra Wideband Radar in Industrial Applications". Sensors 20, n.º 11 (2 de junho de 2020): 3161. http://dx.doi.org/10.3390/s20113161.
Texto completo da fonteHolt, J. M., P. J. Erickson, A. M. Gorczyca e T. Grydeland. "MIDAS-W: a workstation-based incoherent scatter radar data acquisition system". Annales Geophysicae 18, n.º 9 (30 de setembro de 2000): 1231–41. http://dx.doi.org/10.1007/s00585-000-1231-3.
Texto completo da fonteKyzioł, Lesław, Katarzyna Panasiuk, Grzegorz Hajdukiewicz e Krzysztof Dudzik. "Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials". Sensors 21, n.º 1 (28 de dezembro de 2020): 145. http://dx.doi.org/10.3390/s21010145.
Texto completo da fonteGuliyev, Etibar, Rashad Allahverdiyev e Qezale Kheyrabadi. "Identification of the patterns of influence the number of reinforcing elements and the inhomogeneity parameter of the shell material on frequencies of a reinforced inhomogeneous orthotropic spherical shell with a medium". Eastern-European Journal of Enterprise Technologies 5, n.º 7 (119) (31 de outubro de 2022): 35–43. http://dx.doi.org/10.15587/1729-4061.2022.266166.
Texto completo da fonteKonopel'kin, M. Yu, S. V. Petrov e D. A. Smirnyagina. "Implementation of stochastic signal processing algorithms in radar CAD". Russian Technological Journal 10, n.º 5 (21 de outubro de 2022): 49–59. http://dx.doi.org/10.32362/2500-316x-2022-10-5-49-59.
Texto completo da fonteZhou, Daochuan, e Haitang Zhu. "Application of Ground Penetrating Radar in Detecting Deeply Embedded Reinforcing Bars in Pile Foundation". Advances in Civil Engineering 2021 (17 de abril de 2021): 1–13. http://dx.doi.org/10.1155/2021/4813415.
Texto completo da fonteVolosyuk, Valeriy, e Semen Zhyla. "Statistical Theory of Optimal Stochastic Signals Processing in Multichannel Aerospace Imaging Radar Systems". Computation 10, n.º 12 (18 de dezembro de 2022): 224. http://dx.doi.org/10.3390/computation10120224.
Texto completo da fonteMahdi, Sultan, e Syahfrizal Tahcfulloh. "DOA Signal Identification Based on Amplitude and Phase Estimation for Subarray MIMO Radar Applications". Jurnal Elektronika dan Telekomunikasi 22, n.º 2 (31 de dezembro de 2022): 48. http://dx.doi.org/10.55981/jet.498.
Texto completo da fonteFrançoso, Maria Teresa, Carolina Oyama Mota, Tadeu Rosanti Sugahara Medeiros Lima e Creso De Franco Peixoto. "Nondestructive Testing in Asphalt Pavements Using Ground Penetrating Radar (GPR)". Applied Mechanics and Materials 303-306 (fevereiro de 2013): 525–28. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.525.
Texto completo da fonteMbotshwa, Cosygyn, Felix Mazunga e Joseph Singadi. "Design, Fabrication and Testing of an Ultra-Wide Band Bowtie Antenna for Wireless Radar (UHF, L and S Band) Communication". International Journal of Advanced Networking and Applications 14, n.º 01 (2022): 5261–65. http://dx.doi.org/10.35444/ijana.2022.14104.
Texto completo da fonteYu, Bi Qiong. "Azimuths Scan Servo System Design of the Radar". Applied Mechanics and Materials 321-324 (junho de 2013): 680–83. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.680.
Texto completo da fonteUkhanov, E. V. Ukhanov. "SOLVING THE PROBLEM OF OPTIMAL RADAR RECOGNITION OF MOBILE AERIAL OBJECTS BASED ON THE THEORY OF STATISTICAL HYPOTHESIS TESTING". T-Comm 16, n.º 11 (2022): 30–34. http://dx.doi.org/10.36724/2072-8735-2022-16-11-30-34.
Texto completo da fonteSpagnolo, Matteo, Edward C. King, David W. Ashmore, Brice R. Rea, Jeremy C. Ely e Chris D. Clark. "Looking through drumlins: testing the application of ground-penetrating rada". Journal of Glaciology 60, n.º 224 (2014): 1126–34. http://dx.doi.org/10.3189/2014jog14j110.
Texto completo da fonteEhrnsperger, Matthias G., Uwe Siart, Michael Moosbühler, Emil Daporta e Thomas F. Eibert. "Signal degradation through sediments on safety-critical radar sensors". Advances in Radio Science 17 (19 de setembro de 2019): 91–100. http://dx.doi.org/10.5194/ars-17-91-2019.
Texto completo da fonteLakshmaiah, Akumalla, N. N. S. S. R. K. Prasad e K. P. Ray. "Investigations on Monolithic Radome Interactions with Active Electronically Scanned Array on Fighter Platform". Defence Science Journal 71, n.º 5 (2 de setembro de 2021): 662–69. http://dx.doi.org/10.14429/dsj.71.16398.
Texto completo da fonteNorrdine, Abdelmoumen, Harun Cetinkaya e Reinhold Herschel. "Radar Wave Based Positioning of Spatially Distributed MIMO Radar Antenna Systems for Near-Field Nondestructive Testing". IEEE Sensors Letters 4, n.º 5 (maio de 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.2989546.
Texto completo da fonteWu, Yuxuan, Feng Shen, Yue Yuan e Dingjie Xu. "An Improved Modified Universal Ultra-Wideband Antenna Designed for Step Frequency Continuous Wave Ground Penetrating Radar System". Sensors 19, n.º 5 (1 de março de 2019): 1045. http://dx.doi.org/10.3390/s19051045.
Texto completo da fonteQiua, Dong Dong, Yong Jiang Sun, Hua Song Jin e Jian Cheng Yu. "Directional Pattern Measuring System Research of a TT&C Antenna". Advanced Materials Research 774-776 (setembro de 2013): 1518–22. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.1518.
Texto completo da fonteAzizi, Mussyazwann Azizi Mustafa, Mohammad Nazrin Mohd Noh, Idnin Pasya, Ahmad Ihsan Mohd Yassin e Megat Syahirul Amin Megat Ali. "Pedestrian detection using Doppler radar and LSTM neural network". IAES International Journal of Artificial Intelligence (IJ-AI) 9, n.º 3 (1 de setembro de 2020): 394. http://dx.doi.org/10.11591/ijai.v9.i3.pp394-401.
Texto completo da fonteUllah, Raza, Sadiq Ullah, Farooq Faisal, Rizwan Ullah, Dong-you Choi, Ashfaq Ahmad e Babar Kamal. "High-Gain Vivaldi Antenna with Wide Bandwidth Characteristics for 5G Mobile and Ku-Band Radar Applications". Electronics 10, n.º 6 (12 de março de 2021): 667. http://dx.doi.org/10.3390/electronics10060667.
Texto completo da fonteChen, Wei, Guiling Hu, Wenyang Han, Xiaomeng Zhang, Jincheng Wei, Xizhong Xu e Xiangpeng Yan. "Research on the Quality of Asphalt Pavement Construction Based on Nondestructive Testing Technology". Coatings 12, n.º 3 (14 de março de 2022): 379. http://dx.doi.org/10.3390/coatings12030379.
Texto completo da fonteCampean, Emilia, Tiberiu Pavel Itul, Ionela Tanase e Adrian Pisla. "Workspace Generation for a 2 - DOF Parallel Mechanism Using Neural Networks". Applied Mechanics and Materials 162 (março de 2012): 121–30. http://dx.doi.org/10.4028/www.scientific.net/amm.162.121.
Texto completo da fonteUrata, Katia, Josaphat Tetuko, Cahya E. Santosa e Tor Viscor. "Development of an L-Band SAR Microsatellite Antenna for Earth Observation". Aerospace 5, n.º 4 (17 de dezembro de 2018): 128. http://dx.doi.org/10.3390/aerospace5040128.
Texto completo da fonteGao, Lan, Chiara Dachena, Kaijun Wu, Alessandro Fedeli, Matteo Pastorino, Andrea Randazzo, Xiaoping Wu e Sébastien Lambot. "Full-Wave Modeling and Inversion of UWB Radar Data for Wave Propagation in Cylindrical Objects". Remote Sensing 13, n.º 12 (17 de junho de 2021): 2370. http://dx.doi.org/10.3390/rs13122370.
Texto completo da fonteZhai, Shao Xiong. "Research on Drive Control Method of Scanning Mechanism of Radar Scatterometer Antenna". Advanced Materials Research 139-141 (outubro de 2010): 1605–11. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1605.
Texto completo da fonteDelgado, Alfredo, Alexandre Novo e Dirk B. Hays. "Data Acquisition Methodologies Utilizing Ground Penetrating Radar for Cassava (Manihot esculenta Crantz) Root Architecture". Geosciences 9, n.º 4 (15 de abril de 2019): 171. http://dx.doi.org/10.3390/geosciences9040171.
Texto completo da fonteIvashov, Sergey I., Lorenzo Capineri, Timothy D. Bechtel, Vladimir V. Razevig, Masaharu Inagaki, Nikolay L. Gueorguiev e Ahmet Kizilay. "Design and Applications of Multi-Frequency Holographic Subsurface Radar: Review and Case Histories". Remote Sensing 13, n.º 17 (2 de setembro de 2021): 3487. http://dx.doi.org/10.3390/rs13173487.
Texto completo da fonteSchwäbig, Christopher, Siying Wang e Sabine Gütgemann. "Development of a millimetre wave based SAR real-time imaging system for three-dimensional non-destructive testing". tm - Technisches Messen 88, n.º 7-8 (24 de junho de 2021): 488–97. http://dx.doi.org/10.1515/teme-2021-0029.
Texto completo da fonteDérobert, Xavier, Vincent Baltazart, Jean-Michel Simonin, Shreedhar Savant Todkar, Christophe Norgeot e Ho-Yan Hui. "GPR Monitoring of Artificial Debonded Pavement Structures throughout Its Life Cycle during Accelerated Pavement Testing". Remote Sensing 13, n.º 8 (11 de abril de 2021): 1474. http://dx.doi.org/10.3390/rs13081474.
Texto completo da fonteKauffmann, Jens, Ganesh Rajagopalan, Kazunori Akiyama, Vincent Fish, Colin Lonsdale, Lynn D. Matthews e Thushara Pillai. "The Haystack Telescope as an Astronomical Instrument". Galaxies 11, n.º 1 (4 de janeiro de 2023): 9. http://dx.doi.org/10.3390/galaxies11010009.
Texto completo da fonteWidodo, Widodo, Kurnia Anwar Ra’if, Muhammad Aldi Firdaus e Ibnu Thoriq Hidayatullah. "GMODL: An Indonesian MATLAB-based ground-penetrating radar data modeling and processing software". IOP Conference Series: Earth and Environmental Science 1031, n.º 1 (1 de maio de 2022): 012026. http://dx.doi.org/10.1088/1755-1315/1031/1/012026.
Texto completo da fonteTatu, Serioja Ovidiu, e Emilia Moldovan. "Millimeter Wave Multi-Port Interferometric Radar Sensors: Evolution of Fabrication and Characterization Technologies". Sensors 20, n.º 19 (24 de setembro de 2020): 5477. http://dx.doi.org/10.3390/s20195477.
Texto completo da fonteDarnitskyi, Y., V. Lyashenko, S. Shvets e T. Pavliuk. "ANALYSIS OF PECULIARITIES FOR USE OF MUZZLE VELOCITY MEASUREMENT SYSTEM SL – 520PЕ AND DOPPLER RADAR TRAJECTORY MEASUREMENT SYSTEM MFTR–2100/40 DURING TESTS OF ROCKET AND ARTILLERY ARMAMENT". Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, n.º 12 (5 de julho de 2022): 29–40. http://dx.doi.org/10.37701/dndivsovt.12.2022.04.
Texto completo da fonteWahab, S. W., D. N. Chapman, C. D. F. Rogers, K. Y. Foo, N. Metje, S. W. Nawawi, M. N. Isa e A. Madun. "ASSESSING THE CONDITION OF BURIED PIPE USING GROUND PENETRATING RADAR (GPR)". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W9 (26 de outubro de 2018): 77–81. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w9-77-2018.
Texto completo da fonteZou, Lilong, Yan Wang, Iraklis Giannakis, Fabio Tosti, Amir M. Alani e Motoyuki Sato. "Mapping and Assessment of Tree Roots Using Ground Penetrating Radar with Low-Cost GPS". Remote Sensing 12, n.º 8 (20 de abril de 2020): 1300. http://dx.doi.org/10.3390/rs12081300.
Texto completo da fontePalandro, David, Tim Nedwed, Steve Altobelli, Eiichi Fukushima, Mark Conradi, Nick Sowko e Erik DeMicco. "Oil in and under Ice Detection using Nuclear Magnetic Resonance". International Oil Spill Conference Proceedings 2017, n.º 1 (1 de maio de 2017): 1877–89. http://dx.doi.org/10.7901/2169-3358-2017.1.1877.
Texto completo da fonteSchouten, Girmi, Wouter Jansen e Jan Steckel. "Simulation of Pulse-Echo Radar for Vehicle Control and SLAM". Sensors 21, n.º 2 (13 de janeiro de 2021): 523. http://dx.doi.org/10.3390/s21020523.
Texto completo da fonteJoo, Jeong-Myeong, Jin-Young Hong, Sang-Jin Shin, Dong-Hyeon Kim e Yisok Oh. "Effects of Antenna Modeling in 2-D FDTD Simulation of an Ultra-Wide Band Radar for Nondestructive Testing of a Concrete Wall". Journal of Korean Institute of Electromagnetic Engineering and Science 24, n.º 1 (30 de janeiro de 2013): 98–105. http://dx.doi.org/10.5515/kjkiees.2013.24.1.98.
Texto completo da fonte