Literatura científica selecionada sobre o tema "Quarks orbital angular momentum"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quarks orbital angular momentum".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Quarks orbital angular momentum"

1

Momeni-Feili, Maryam, Firooz Arash, Fatemeh Taghavi-Shahri, and Abolfazl Shahveh. "Contribution of orbital angular momentum to the nucleon spin." International Journal of Modern Physics A 32, no. 06n07 (2017): 1750036. http://dx.doi.org/10.1142/s0217751x17500361.

Texto completo da fonte
Resumo:
We have calculated the orbital angular momentum of quarks and gluons in the nucleon. The calculations are carried out in the next to leading order utilizing the so-called valon model. It is found that the average quark orbital angular momentum is positive, but small, and the average gluon orbital angular momentum is negative and large. We also report on some regularities about the total angular momentum of the quarks and the gluon, as well as on the orbital angular momentum of the separate partons. We have also provided partonic angular momentum, [Formula: see text] as a function of [Formula:
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mukherjee, Asmita, Sreeraj Nair, and Vikash Kumar Ojha. "Wigner Distributions and Orbital Angular Momentum of Quarks." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560040. http://dx.doi.org/10.1142/s201019451560040x.

Texto completo da fonte
Resumo:
We present a recent model calculation of the Wigner distributions for the quarks and the orbital angular momentum carried by the quarks. These Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs).
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

SONG, XIAOTONG. "QUARK ORBITAL ANGULAR MOMENTUM IN THE BARYON." International Journal of Modern Physics A 16, no. 22 (2001): 3673–97. http://dx.doi.org/10.1142/s0217751x01005018.

Texto completo da fonte
Resumo:
Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ and the chiral splitting probability a is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic mo
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

LORCÉ, CÉDRIC, and BARBARA PASQUINI. "WIGNER DISTRIBUTIONS AND QUARK ORBITAL ANGULAR MOMENTUM." International Journal of Modern Physics: Conference Series 20 (January 2012): 84–91. http://dx.doi.org/10.1142/s2010194512009129.

Texto completo da fonte
Resumo:
We discuss the quark phase-space or Wigner distributions of the nucleon which combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. In particular, we present results for the distribution of unpolarized quarks in a longitudinally polarized nucleon obtained in a light-front constituent quark model. We show how the quark orbital angular momentum can be extracted from the Wigner distributions and compare it with alternative definitions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

BURKARDT, MATTHIAS. "GPDs AND TMDs." International Journal of Modern Physics: Conference Series 20 (January 2012): 75–83. http://dx.doi.org/10.1142/s2010194512009117.

Texto completo da fonte
Resumo:
For transversely polarized nucleons the distribution of quarks in the transverse plane is transversely shifted and that shift can be described in terms of Generalized Parton Distributions (GPDs). This observation provides a 'partonic' derivation of the Ji-relation for the quark angular momentum in terms of GPDs. Wigner distributions are used to show that the difference between the Jaffe-Manohar definiton of quark orbital angular momentum and that of Ji is equal to the change of orbital angular momentum due to the final state interactions as the struck quark leaves the target in a DIS experimen
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Klein, Andi. "Measuring the Sea Quark Sivers Asymmetry: The E1039 Experiment at Fermilab." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560064. http://dx.doi.org/10.1142/s2010194515600642.

Texto completo da fonte
Resumo:
One of the continuing puzzles in QCD is the origin of the nucleon spin. All of the existing experimental data suggest that the contributions from the quark and gluon spins account only for about 50% of the nucleon spin. In order to account for the remaining 50%, one has to include the orbital angular momentum of the quarks and gluons. One way to establish if quarks carry significant angular momentum, is to perform a measurement of the Sivers function, which describes the correlation of the spin direction of the nucleon with the transverse momentum of the quark. We will describe the E1039 exper
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mukherjee, Asmita, Sreeraj Nair, and Vikash Kumar Ojha. "Wigner Distributions of Quark." International Journal of Modern Physics: Conference Series 40 (January 2016): 1660055. http://dx.doi.org/10.1142/s2010194516600557.

Texto completo da fonte
Resumo:
Wigner distribution functions are the quantum analogue of the classical phase space distribution and being quantum implies that they are not genuine phase space distribution and thus lack any probabilistic interpretation. Nevertheless, Wigner distributions are still interesting since they can be related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs) under some limit. We study the Wigner distribution of quarks and also the orbital angular momentum (OAM) of quarks in the dressed quark model.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Liuti, Simonetta, Aurore Courtoy, Gary R. Goldstein, J. Osvaldo Gonzalez Hernandez, and Abha Rajan. "Observables for Quarks and Gluons Orbital Angular Momentum Distributions." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560039. http://dx.doi.org/10.1142/s2010194515600393.

Texto completo da fonte
Resumo:
We discuss the observables that have been recently put forth to describe quarks and gluons orbital angular momentum distributions. Starting from a standard parameterization of the energy momentum tensor in QCD one can single out two forms of angular momentum, a so-called kinetic term – Ji decomposition – or a canonical term – Jaffe-Manohar decomposition. Orbital angular momentum has been connected in each decomposition to a different observable, a Generalized Transverse Momentum Distribution (GTMD), for the canonical term, and a twist three Generalized Parton Distribution (GPD) for the kinetic
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

DIEHL, M. "ON THE DISTRIBUTION OF PARTONS IN THE TRANSVERSE PLANE." International Journal of Modern Physics A 21, no. 04 (2006): 938–41. http://dx.doi.org/10.1142/s0217751x06032368.

Texto completo da fonte
Resumo:
Elastic nucleon form factors constrain the spatial distribution of quarks in the impact parameter plane. A recent analysis found that the average impact parameter of quarks strongly depends on their longitudinal momentum, and obtained an estimate of the orbital angular momentum carried by valence quarks in the proton.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

THOMAS, ANTHONY W. "SPIN AND ORBITAL ANGULAR MOMENTUM IN THE PROTON." International Journal of Modern Physics E 18, no. 05n06 (2009): 1116–34. http://dx.doi.org/10.1142/s0218301309013403.

Texto completo da fonte
Resumo:
Since the announcement of the proton spin crisis by the European Muon Collaboration there has been considerable progress in unravelling the distribution of spin and orbital angular momentum within the proton. We review the current status of the problem, showing that not only have strong upper limits have been placed on the amount of polarized glue in the proton but that the experimental determination of the spin content has become much more precise. It is now clear that the origin of the discrepancy between experiment and the naive expectation of the fraction of spin carried by the quarks and
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Quarks orbital angular momentum"

1

Riberdy, Michael. "Continuum QCD approaches to the 3D structure of the nucleon." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP043.

Texto completo da fonte
Resumo:
Premier aspect : Modélisation des GPDs via les fonctions d'onde du cône de lumière (FOCLs)L'étude améliore les moyens de trouver les fluctuations des nucléons en terme de quarks d'helicité définie. Elle utilise une représentation des distributions généralisées de partons (GPD) fondée sur des FOCLs de moment angulaire orbital de quark défini. Ces FOCLs sont importantes dans les développements de Fock des états hadroniques et sont des projections d'amplitudes à trois quarks. Les projections 3D du cône de lumière de ces amplitudes sont utilisées pour restaurer une interprétation probabiliste. Les
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Romero, Mary Jacquiline Romero. "Orbital angular momentum entanglement." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3812/.

Texto completo da fonte
Resumo:
Entanglement in higher dimensions is an attractive concept that is a chal- lenge to realise experimentally. To this end, the entanglement of the orbital angular momentum (OAM) of photons holds promise. The OAM state-space is discrete and theoretically unbounded. In the work that follows, we investi- gate various aspects of OAM entanglement. We show how the correlations in OAM and its conjugate variable, angular position, are determined by phase- matching and the shape of the pump beam in spontaneous parametric down- conversion. We implement tests of quantum mechanics which have been previously
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pelegrí, Andrés Gerard. "Ultracold atoms carrying orbital angular momentum." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670113.

Texto completo da fonte
Resumo:
A causa de la gran flexibilitat que ofereixen en la seva manipulació i control, els sistemes d’àtoms ultrafreds són ideals per simular un ampli ventall de models de matèria condensada i constitueixen una plataforma molt prometedora per a la implementació de noves tecnologies quàntiques. En aquest context, l’atomtrònica s’ha establert recentment com un nou camp de recerca que té per objectiu crear circuits d’ones de matèria amb àtoms ultrafreds en micro trampes òptiques versàtils, amb el doble propòsit d’explorar nous fenòmens físics i de construir dispositius quàntics com ara sensors o ordinad
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lavery, Martin P. J. "Measurement of light's orbital angular momentum." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4716/.

Texto completo da fonte
Resumo:
The desire to increase the amount of information that can be encoded onto a single photon has driven research in many areas of optics. One such area is the study of the orbital angular momentum (OAM) carried by a light beam. These beams have helical phase-fronts and carry an orbital angular momentum of l_hbar per photon, where the integer l is unbounded, giving a large state space in which to encode information. In the work that follows I discuss the development of new methods to measure the OAM carried by a light beam. An adaptation of a previously outlined interferometric technique is presen
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lloyd, Sophia M. "Electron beams with orbital angular momentum." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4643/.

Texto completo da fonte
Resumo:
Electron vortex beams are beams of freely propagating electrons that possess orbital angular momentum. Recently predicted and experimentally verified, electron vortices are hoped to lead to new developments in several areas, in particular electron microscopy, as well as other areas as diverse as spintronics and quantum information. This thesis introduces and examines key concepts relating to electron vortices, and as an introduction, the major developments relating to electron vortices over the past few years are outlined and discussed. The Bessel beam is derived as a suitable solution to the
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Božinović, Nenad. "Orbital angular momentum in optical fibers." Thesis, Boston University, 2013. https://hdl.handle.net/2144/10943.

Texto completo da fonte
Resumo:
Thesis (Ph.D.)--Boston University<br>Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multimode fibers suffer from mode coupling, caused by random perturbations
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Spinello, Fabio. "Radio communications using Orbital Angular Momentum." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424248.

Texto completo da fonte
Resumo:
Orbital Angular Momentum (OAM) is a fundamental property of electromagnetic fields, associated to helicity of waves phase fronts. Like frequency and polarization, it represents a degree of freedom of an electromagnetic field and can be used for its identification. In fact, two waves with the same frequency but different OAM values can be distinguished from each other when their whole phase fronts are collected. Electromagnetic fields with nonzero OAM form an orthogonal basis and can be discriminated, without any digital post processing, at the physical layer. For this reason, they represent an
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Schemmel, Peter. "Generation of millimetre-wavelength orbital angular momentum." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/generation-of-millimetrewavelength-orbital-angular-momentum(47efa2f9-bc20-41b3-93ad-b9206eaa0a9f).html.

Texto completo da fonte
Resumo:
Studying the orbital angular momentum (OAM) of light has become rather fashion- able in the 21st century. Yet, most of major advances in OAM related research have been conducted in the visible regime of light. A significant portion OAM research revolves around using OAM radiation to perform some function that is deemed useful. Examples of this are optical trapping, micro-machine manipulation and the development of advanced communication systems. Photon entanglement measurements also make use of OAM radiation. Interest in probing radiation for naturally generated OAM is far less popular. For ex
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

McLaren, Melanie. "Tailoring quantum entanglement of orbital angular momentum." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.

Texto completo da fonte
Resumo:
Thesis (PhD)--Stellenbosch University, 2014.<br>ENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and m
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Giovannini, Daniel. "Orbital angular momentum entanglement in high dimensions." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5720/.

Texto completo da fonte
Resumo:
Orbital angular momentum (OAM) is one of the most recently discovered properties of light, and it is only in the past decade its quantum properties have been the subject of experimental investigations and have found applications. Unlike polarization, which is only bidimensional, orbital angular momentum provides, with relative ease, unprecedented access to a theoretically unbounded discrete state space. The process of spontaneous parametric down-conversion has long been used as a source of two-photon states that can be entangled in several degrees of freedom, including OAM. In this thesis, the
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Quarks orbital angular momentum"

1

Evans, Myron W. Pump laser induced net angular momentum: Orbital angular polarisability, induced electric polarization, and the inverse Faraday effect. Cornell Theory Center, Cornell University, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

L, Pan H., and United States. National Aeronautics and Space Administration., eds. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity. National Aeronautics and Space Administration, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

L, Pan H., and United States. National Aeronautics and Space Administration., eds. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity. National Aeronautics and Space Administration, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

KHARE, Lochab. Orbital Angular Momentum States Light Hb: Orbital Angular Momentum States of Light, Second Edition. Institute of Physics Publishing, 2024.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Khare, Professor Kedar. Orbital Angular Momentum States of Light. IOP Publishing Ltd, 2020. http://dx.doi.org/10.1088/978-0-7503-2280-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Torres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Torres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Limited, John, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Torres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Torres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Twisted photons: Applications of light with orbital angular momentum. Wiley-VCH, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Quarks orbital angular momentum"

1

Burkardt, Matthias. "Quark Orbital Angular Momentum." In Light Cone 2015. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lorcé, Cédric, and Keh-Fei Liu. "Quark and Gluon Orbital Angular Momentum: Where Are We?" In Light Cone 2015. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pisano, Silvia. "Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum." In Light Cone 2015. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_55.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wisniewski-Barker, Emma, and Miles J. Padgett. "Orbital Angular Momentum." In Photonics. John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119009719.ch10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Schwabl, Franz. "Orbital Angular Momentum and Spin." In Advanced Texts in Physics. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05418-5_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dai, Yanan. "Plasmon Orbital Angular Momentum Generation." In Imaging Light with Photoelectrons on the Nano-Femto Scale. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52836-2_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Schwabl, Franz. "Orbital Angular Momentum and Spin." In Advanced Texts in Physics. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03929-8_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Burkardt, Matthias. "GPDs and Orbital Angular Momentum." In Light Cone 2016. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hecht, K. T. "Spherical Harmonics, Orbital Angular Momentum." In Quantum Mechanics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ke, Xizheng. "Orbital Angular Momentum Beam Techniques." In Handbook of Optical Wireless Communication. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1522-0_48.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Quarks orbital angular momentum"

1

Lorce, Cédric, and Barbara Pasquini. "Quark phase-space distributions and orbital angular momentum." In Sixth International Conference on Quarks and Nuclear Physics. Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.157.0050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Burkardt, Matthias. "Quark Orbital Angular Momentum." In QCD Evolution 2015. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.249.0039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mukherjee, Asmita. "Wigner Distributions and Orbital Angular Momentum of Quarks and Gluons." In QCD Evolution 2015. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.249.0013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Burkardt, Matthias. "Aspects of Quark Orbital Angular Momentum." In INT Program INT-18-3. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811214950_0051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ellinghaus, F. "Quark Orbital Angular Momentum and Exclusive Processes at HERMES." In INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS: 9th Conference CIPAN2006. AIP, 2006. http://dx.doi.org/10.1063/1.2402714.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lorcé, Cédric, and Barbara Pasquini. "Accessing the quark orbital angular momentum with Wigner distributions." In DIFFRACTION 2012: International Workshop on Diffraction in High Energy Physics. AIP, 2013. http://dx.doi.org/10.1063/1.4802141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Li, Bing An. "Quark spin and quark orbital angular momentum content of the proton." In The 11th International symposium on high energy spin physics. AIP, 1995. http://dx.doi.org/10.1063/1.48961.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Engelhardt, Michael. "Quark orbital dynamics in the nucleon - from Ji to Jaffe-Manohar orbital angular momentum." In 34th annual International Symposium on Lattice Field Theory. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.256.0138.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Liuti, Simonetta. "Towards a Direct Measurement of the Quark Orbital Angular Momentum Distribution." In XXIII International Workshop on Deep-Inelastic Scattering. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.247.0204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Engelhardt, Michael, Jeremy Green, Nesreen Hasan, et al. "Quark orbital angular momentum in the proton evaluated using a direct derivative method." In The 36th Annual International Symposium on Lattice Field Theory. Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0115.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Quarks orbital angular momentum"

1

Liu, K. F. Quark orbital angular momentum from lattice QCD. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/753265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Voelz, David. Novel Detection of Optical Orbital Angular Momentum. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada616749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Daldorff, L. K., S. M. Mohammadi, J. E. Bergman, et al. Coherent Detection of Orbital Angular Momentum in Radio. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada627259.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Brodsky, Stanley J. Orbital Angular Momentum on the Light-Front and QCD Observables. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/877429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Scott, Ryan P., Roberto Proietti, Binbin Guan, and S. J. Yoo. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada622577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mahanta, Monisha K. Experimentation of Fiber-Optic Transmission of Light with Orbital Angular Momentum. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada451409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brodsky, S. J. Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/753316.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Oh, S. Y. SUGGEL: A Program Suggesting the Orbital Angular Momentum of a Neutron Resonance from the Magnitude of its Neutron Width. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/777661.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!