Siga este link para ver outros tipos de publicações sobre o tema: Quantum theory.

Artigos de revistas sobre o tema "Quantum theory"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Quantum theory".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Lee, Hyun Seok. "Cultural Studies and Quantum Mechanics". Criticism and Theory Society of Korea 28, n.º 2 (30 de junho de 2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

YF, Chang. "Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications". Physical Science & Biophysics Journal 8, n.º 1 (2 de fevereiro de 2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.

Texto completo da fonte
Resumo:
Reconstructing quantum mechanics has been an exploratory direction for physicists. Based on logical structure and basic principles of quantum mechanics, we propose a new method on reconstruction quantum mechanics completely by the waveparticle duality. This is divided into two steps: First, from wave form and duality we obtain the extensive quantum theory, which has the same quantum formulations only with different quantum constants H; then microscopic phenomena determine H=h. Further, we derive the corresponding commutation relation, the uncertainty principle and Heisenberg equation, etc. Then we research potential and interactions in special relativity and general relativity. Finally, various applications and developments, and some basic questions are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bethe, Hans A. "Quantum theory". Reviews of Modern Physics 71, n.º 2 (1 de março de 1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wilson, Robin. "Quantum theory". Mathematical Intelligencer 41, n.º 4 (15 de julho de 2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yukalov, V. I., e D. Sornette. "Quantum decision theory as quantum theory of measurement". Physics Letters A 372, n.º 46 (novembro de 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Yukalov, V. I., e D. Sornette. "Quantum theory of measurements as quantum decision theory". Journal of Physics: Conference Series 594 (18 de março de 2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lan, B. L., e S.-N. Liang. "Is Bohm's quantum theory equivalent to standard quantum theory?" Journal of Physics: Conference Series 128 (1 de agosto de 2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hofmann, Ralf. "Quantum Field Theory". Universe 10, n.º 1 (28 de dezembro de 2023): 14. http://dx.doi.org/10.3390/universe10010014.

Texto completo da fonte
Resumo:
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Green, H. S. "Quantum Theory of Gravitation". Australian Journal of Physics 51, n.º 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Texto completo da fonte
Resumo:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hudson, R. L., e L. S. Brown. "Quantum Field Theory". Mathematical Gazette 79, n.º 484 (março de 1995): 249. http://dx.doi.org/10.2307/3620134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Sorongane, Elie W’ishe. "Quantum Color Theory". Open Journal of Applied Sciences 12, n.º 04 (2022): 517–27. http://dx.doi.org/10.4236/ojapps.2022.124036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Wills, S. "Quantum Information Theory". Irish Mathematical Society Bulletin 0082 (2018): 35–37. http://dx.doi.org/10.33232/bims.0082.35.37.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Flynn, Matthew. "Quantum sock theory". Physics World 8, n.º 5 (maio de 1995): 72–76. http://dx.doi.org/10.1088/2058-7058/8/5/39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Bennett, C. H., e P. W. Shor. "Quantum information theory". IEEE Transactions on Information Theory 44, n.º 6 (1998): 2724–42. http://dx.doi.org/10.1109/18.720553.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wilczek, Frank. "Quantum field theory". Reviews of Modern Physics 71, n.º 2 (1 de março de 1999): S85—S95. http://dx.doi.org/10.1103/revmodphys.71.s85.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Rudolph, Oliver. "Temporal quantum theory". Physical Review A 59, n.º 2 (1 de fevereiro de 1999): 1045–55. http://dx.doi.org/10.1103/physreva.59.1045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 36, n.º 9 (setembro de 1985): 391. http://dx.doi.org/10.1088/0031-9112/36/9/028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Rauch, Helmut. "Debating quantum theory". Physics World 17, n.º 7 (julho de 2004): 39–40. http://dx.doi.org/10.1088/2058-7058/17/7/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Mandl, F., G. Shaw e Stephen Gasiorowicz. "Quantum Field Theory". Physics Today 38, n.º 10 (outubro de 1985): 111–12. http://dx.doi.org/10.1063/1.2814741.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Haag, Rudolf. "On quantum theory". International Journal of Quantum Information 17, n.º 04 (junho de 2019): 1950037. http://dx.doi.org/10.1142/s0219749919500370.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bernstein, Ethan, e Umesh Vazirani. "Quantum Complexity Theory". SIAM Journal on Computing 26, n.º 5 (outubro de 1997): 1411–73. http://dx.doi.org/10.1137/s0097539796300921.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Omnès, Roland. "Consistent quantum theory". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34, n.º 2 (junho de 2003): 329–31. http://dx.doi.org/10.1016/s1355-2198(03)00010-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Titani, Satoko, e Haruhiko Kozawa. "Quantum Set Theory". International Journal of Theoretical Physics 42, n.º 11 (novembro de 2003): 2575–602. http://dx.doi.org/10.1023/b:ijtp.0000005977.55748.e4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Bacon, Dave. "Populist quantum theory". Nature Physics 4, n.º 7 (julho de 2008): 509–10. http://dx.doi.org/10.1038/nphys1009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Rédei, Miklós, e Stephen Jeffrey Summers. "Quantum probability theory". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38, n.º 2 (junho de 2007): 390–417. http://dx.doi.org/10.1016/j.shpsb.2006.05.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Godin, T. J., e Roger Haydock. "Quantum circuit theory". Superlattices and Microstructures 2, n.º 6 (janeiro de 1986): 597–600. http://dx.doi.org/10.1016/0749-6036(86)90122-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Tokuo, Kenji. "Quantum Number Theory". International Journal of Theoretical Physics 43, n.º 12 (dezembro de 2004): 2461–81. http://dx.doi.org/10.1007/s10773-004-7711-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Babelon, O., e L. Bonora. "Quantum Toda theory". Physics Letters B 253, n.º 3-4 (janeiro de 1991): 365–72. http://dx.doi.org/10.1016/0370-2693(91)91734-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Agarwal, N. S. "New Quantum Theory". Indian Journal of Science and Technology 5, n.º 11 (20 de novembro de 2012): 1–6. http://dx.doi.org/10.17485/ijst/2012/v5i11.5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zweifel, Paul F., e Bruce Toomire. "Quantum transport theory". Transport Theory and Statistical Physics 27, n.º 3-4 (abril de 1998): 347–59. http://dx.doi.org/10.1080/00411459808205630.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Friedberg, R., e P. C. Hohenberg. "Compatible quantum theory". Reports on Progress in Physics 77, n.º 9 (22 de agosto de 2014): 092001. http://dx.doi.org/10.1088/0034-4885/77/9/092001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 37, n.º 7 (julho de 1986): 304. http://dx.doi.org/10.1088/0031-9112/37/7/030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

McCall, Storrs. "Axiomatic Quantum Theory". Journal of Philosophical Logic 30, n.º 5 (outubro de 2001): 465–77. http://dx.doi.org/10.1023/a:1012226116310.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Unger, H. J. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 187, Part_1 (janeiro de 1994): 155–56. http://dx.doi.org/10.1524/zpch.1994.187.part_1.155a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Uhlmann, A. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 194, Part_1 (janeiro de 1996): 130. http://dx.doi.org/10.1524/zpch.1996.194.part_1.130.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Aastrup, Johannes, e Jesper Møller Grimstrup. "Quantum holonomy theory". Fortschritte der Physik 64, n.º 10 (12 de setembro de 2016): 783–818. http://dx.doi.org/10.1002/prop.201600073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Schumacher, Benjamin, e Michael D. Westmoreland. "Modal Quantum Theory". Foundations of Physics 42, n.º 7 (17 de maio de 2012): 918–25. http://dx.doi.org/10.1007/s10701-012-9650-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

MacDonald, A. H., e Matthew P. A. Fisher. "Quantum theory of quantum Hall smectics". Physical Review B 61, n.º 8 (15 de fevereiro de 2000): 5724–33. http://dx.doi.org/10.1103/physrevb.61.5724.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hiatt, Christopher. "Quantum traces in quantum Teichmüller theory". Algebraic & Geometric Topology 10, n.º 3 (1 de junho de 2010): 1245–83. http://dx.doi.org/10.2140/agt.2010.10.1245.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Doplicher, Sergio. "Quantum Field Theory on Quantum Spacetime". Journal of Physics: Conference Series 53 (1 de novembro de 2006): 793–98. http://dx.doi.org/10.1088/1742-6596/53/1/051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Wiseman, H. M. "Quantum trajectories and quantum measurement theory". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, n.º 1 (fevereiro de 1996): 205–22. http://dx.doi.org/10.1088/1355-5111/8/1/015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

SORKIN, R. D. "Quantum Gravity: Quantum Theory of Gravity." Science 228, n.º 4699 (3 de maio de 1985): 572. http://dx.doi.org/10.1126/science.228.4699.572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Dong, Chongying, Xiangyu Jiao e Feng Xu. "Quantum dimensions and quantum Galois theory". Transactions of the American Mathematical Society 365, n.º 12 (20 de agosto de 2013): 6441–69. http://dx.doi.org/10.1090/s0002-9947-2013-05863-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

SORKIN, RAFAEL D. "QUANTUM MECHANICS AS QUANTUM MEASURE THEORY". Modern Physics Letters A 09, n.º 33 (30 de outubro de 1994): 3119–27. http://dx.doi.org/10.1142/s021773239400294x.

Texto completo da fonte
Resumo:
The additivity of classical probabilities is only the first in a hierarchy of possible sum rules, each of which implies its successor. The first and most restrictive sum rule of the hierarchy yields measure theory in the Kolmogorov sense, which is appropriate physically for the description of stochastic processes such as Brownian motion. The next weaker sum rule defines a generalized measure theory which includes quantum mechanics as a special case. The fact that quantum probabilities can be expressed "as the squares of quantum amplitudes" is thus derived in a natural manner, and a series of natural generalizations of the quantum formalism is delineated. Conversely, the mathematical sense in which classical physics is a special case of quantum physics is clarified. The present paper presents these relationships in the context of a "realistic" interpretation of quantum mechanics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ying, Mingsheng. "Quantum computation, quantum theory and AI". Artificial Intelligence 174, n.º 2 (fevereiro de 2010): 162–76. http://dx.doi.org/10.1016/j.artint.2009.11.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Surya, Sumati, e Petros Wallden. "Quantum Covers in Quantum Measure Theory". Foundations of Physics 40, n.º 6 (6 de fevereiro de 2010): 585–606. http://dx.doi.org/10.1007/s10701-010-9419-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Brown, Lowell S., Michio Kaku e O. W. Greenberg. "Quantum Field Theory and Quantum Field Theory: A Modern Introduction". Physics Today 47, n.º 2 (fevereiro de 1994): 104–6. http://dx.doi.org/10.1063/1.2808409.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

PINTO-NETO, NELSON. "BOUNCING AND QUANTUM THEORY". International Journal of Modern Physics A 26, n.º 22 (10 de setembro de 2011): 3801–12. http://dx.doi.org/10.1142/s0217751x11054267.

Texto completo da fonte
Resumo:
In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

PINTO-NETO, NELSON. "BOUNCING AND QUANTUM THEORY". International Journal of Modern Physics: Conference Series 03 (janeiro de 2011): 183–94. http://dx.doi.org/10.1142/s2010194511001279.

Texto completo da fonte
Resumo:
In this contribution I will present a review about bouncing models arriving from quantum cosmology and show how one can describe the evolution of quantum cosmological perturbations on them. I will discuss the important role played by the choice of the precise quantum theory one selects to interpret the wave function of the Universe in order to obtain simple equations for the evolution of quantum perturbations on these quantum cosmological backgrounds. I will present the predictions of these models concerning the power spectrum of cosmological perturbations and how they can be compared with the usual results obtained from inflationary models. Finally, I will present the new implications of these results for quantum theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Unruh, W. G. "Why study quantum theory?" Canadian Journal of Physics 64, n.º 2 (1 de fevereiro de 1986): 128–30. http://dx.doi.org/10.1139/p86-019.

Texto completo da fonte
Resumo:
It is argued that the study of the problems associated with quantum mechanics and gravity, and especially those arising from the role of measurement in quantum gravity, have led and will continue to lead to new insights even in ordinary quantum problems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia