Artigos de revistas sobre o tema "Quantum stark effect"

Siga este link para ver outros tipos de publicações sobre o tema: Quantum stark effect.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Quantum stark effect".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Marie, X., J. Barrau, B. Brousseau, Th Amand, M. Brousseau, N. Lauret, C. Starck e A. Peralès. "Stark effect in quantum-wells". Superlattices and Microstructures 10, n.º 1 (janeiro de 1991): 95–98. http://dx.doi.org/10.1016/0749-6036(91)90155-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Y., H. S. Djie e B. S. Ooi. "Quantum-confined Stark effect in interdiffused quantum dots". Applied Physics Letters 89, n.º 15 (9 de outubro de 2006): 151104. http://dx.doi.org/10.1063/1.2358296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bonilla, L. L., V. A. Kochelap e C. A. Velasco. "Patterns under quantum confined Stark effect". Journal of Physics: Condensed Matter 10, n.º 31 (10 de agosto de 1998): L539—L546. http://dx.doi.org/10.1088/0953-8984/10/31/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

JAZIRI, S., G. BASTARD e R. BENNACEUR. "Stark effect in parabolic quantum dot". Le Journal de Physique IV 03, n.º C5 (outubro de 1993): 367–72. http://dx.doi.org/10.1051/jp4:1993577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pokutnyi, S. I., L. Jacak, J. Misiewicz, W. Salejda e G. G. Zegrya. "Stark effect in semiconductor quantum dots". Journal of Applied Physics 96, n.º 2 (15 de julho de 2004): 1115–19. http://dx.doi.org/10.1063/1.1759791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior e B. C. Cavenett. "quantum confined Stark effect waveguide modulator". Journal of Crystal Growth 159, n.º 1-4 (fevereiro de 1996): 902–5. http://dx.doi.org/10.1016/0022-0248(95)00796-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio e V. R. Velasco. "Stark effect in diffused quantum wells". Superlattices and Microstructures 26, n.º 5 (novembro de 1999): 325–32. http://dx.doi.org/10.1006/spmi.1999.0786.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gibb, K., C. Lacelle, Q. Sun, E. Fortin e A. P. Roth. "The quantum-confined Stark effect in shallow quantum wells". Canadian Journal of Physics 69, n.º 3-4 (1 de março de 1991): 447–50. http://dx.doi.org/10.1139/p91-073.

Texto completo da fonte
Resumo:
We have investigated the quantum-confined Stark effect for a series of four InGaAs–GaAs single quantum wells using photocurrent spectroscopy. All four samples reveal quadratic Stark shifts for the lowest electron-to-heavy-hole transition at weak electric fields. The field dependence becomes subquadratic at large applied fields. The field dependent reduction of the exciton binding energy is measured and is on the order of a millielectron volt for applied electric fields approaching 80 kV cm−1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Qiu, Ying Ning, Wei Sheng Lu e Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures". Advanced Materials Research 773 (setembro de 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.

Texto completo da fonte
Resumo:
The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Morita, Masahiko, Katsuyuki Goto e Takeo Suzuki. "Quantum-Confined Stark Effect in Stepped-Potential Quantum Wells". Japanese Journal of Applied Physics 29, Part 2, No. 9 (20 de setembro de 1990): L1663—L1665. http://dx.doi.org/10.1143/jjap.29.l1663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Hiroshima, Tohya, e Kenichi Nishi. "Quantum‐confined Stark effect in graded‐gap quantum wells". Journal of Applied Physics 62, n.º 8 (15 de outubro de 1987): 3360–65. http://dx.doi.org/10.1063/1.339298.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Fröhlich, D., R. Wille, W. Schlapp e G. Weimann. "Optical quantum-confined Stark effect in GaAs quantum wells". Physical Review Letters 59, n.º 15 (12 de outubro de 1987): 1748–51. http://dx.doi.org/10.1103/physrevlett.59.1748.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Pokutnyi, Sergey I. "Size Quantization Stark Effect in Quantum Dots". Optics 3, n.º 6 (2014): 57. http://dx.doi.org/10.11648/j.optics.s.2014030601.19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Jana, Raj K., e Debdeep Jena. "Stark-effect scattering in rough quantum wells". Applied Physics Letters 99, n.º 1 (4 de julho de 2011): 012104. http://dx.doi.org/10.1063/1.3607485.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wang, S. Y., Y. Kawakami, J. Simpson, H. Stewart, K. A. Prior e B. C. Cavenett. "ZnSe‐ZnCdSe quantum confined Stark effect modulators". Applied Physics Letters 62, n.º 15 (12 de abril de 1993): 1715–17. http://dx.doi.org/10.1063/1.109583.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Andrews, S. R., C. M. Murray, R. A. Davies e T. M. Kerr. "Stark effect in strongly coupled quantum wells". Physical Review B 37, n.º 14 (15 de maio de 1988): 8198–204. http://dx.doi.org/10.1103/physrevb.37.8198.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

MYSYROWICZ, A., e D. HULIN. "OPTICAL STARK EFFECT IN GaAs QUANTUM WELLS". Le Journal de Physique Colloques 49, n.º C2 (junho de 1988): C2–175—C2–177. http://dx.doi.org/10.1051/jphyscol:1988241.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ekinov, A. I., Al L. Efros, T. V. Shubina e A. P. Skvortsov. "Quantum-size stark effect in semiconductor microcrystals". Journal of Luminescence 46, n.º 2 (março de 1990): 97–100. http://dx.doi.org/10.1016/0022-2313(90)90011-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kawakami, Y., S. Y. Wang, J. Simpson, I. Hauksson, S. J. A. Adams, H. Stewart, B. C. Cavenett e K. A. Prior. "II–VI quantum-confined Stark effect modulators". Physica B: Condensed Matter 185, n.º 1-4 (abril de 1993): 496–99. http://dx.doi.org/10.1016/0921-4526(93)90285-e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Rinaldi, Ross, Milena DeGiorgi, Massimo DeVittorio, Angelo Melcarne, Paolo Visconti, Roberto Cingolani, Harri Lipsanen, Markku Sopanen, T. Drufva e Jukka Tulkki. "Longitudinal Stark Effect in Parabolic Quantum Dots". Japanese Journal of Applied Physics 40, Part 1, No. 3B (30 de março de 2001): 2002–5. http://dx.doi.org/10.1143/jjap.40.2002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Rossmann, H., A. Schülzgen, F. Henneberger e M. Müller. "Quantum Confined DC Stark Effect in Microcrystallites". physica status solidi (b) 159, n.º 1 (1 de maio de 1990): 287–90. http://dx.doi.org/10.1002/pssb.2221590133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kim, S. J., Y. T. Oh, S. K. Kim, T. W. Kang e T. W. Kim. "Stark effect and Stark‐ladder effect in Al0.4Ga0.6As/GaAs asymmetric coupled multiple quantum wells". Journal of Applied Physics 77, n.º 6 (15 de março de 1995): 2486–94. http://dx.doi.org/10.1063/1.358777.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Short, S. W., S. H. Xin, A. Yin, H. Luo, M. Dobrowolska e J. K. Furdyna. "Quantum‐confined Stark effect in ZnSe/Zn1−xCdxSe quantum wells". Applied Physics Letters 67, n.º 4 (24 de julho de 1995): 503–5. http://dx.doi.org/10.1063/1.114550.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ishikawa, Takuya, Shinji Nishimura e Kunio Tada. "Quantum-Confined Stark Effect in a Parabolic-Potential Quantum Well". Japanese Journal of Applied Physics 29, Part 1, No. 8 (20 de agosto de 1990): 1466–73. http://dx.doi.org/10.1143/jjap.29.1466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Li, E. Herbert, K. S. Chan, Bernard L. Weiss e Joseph Micallef. "Quantum‐confined Stark effect in interdiffused AlGaAs/GaAs quantum well". Applied Physics Letters 63, n.º 4 (26 de julho de 1993): 533–35. http://dx.doi.org/10.1063/1.109996.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Héroux, J. B., X. Yang e W. I. Wang. "Quantum confined Stark effect in GaInNAs∕GaAs multiple quantum wells". IEE Proceedings - Optoelectronics 150, n.º 1 (2003): 92. http://dx.doi.org/10.1049/ip-opt:20030042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Empedocles, S. A. "Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots". Science 278, n.º 5346 (19 de dezembro de 1997): 2114–17. http://dx.doi.org/10.1126/science.278.5346.2114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wakita, Koichi, Isamu Kotaka, Masashi Nakao e Hiromitsu Asai. "Large Quantum-Confined Stark-Effect in Quaternary InGaAlAs Quantum Wells". Japanese Journal of Applied Physics 28, Part 1, No. 9 (20 de setembro de 1989): 1732–33. http://dx.doi.org/10.1143/jjap.28.1732.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Chen, W. Q., S. M. Wang, T. G. Andersson e J. Thordson. "Inverse parabolic quantum well and its quantum‐confined Stark effect". Journal of Applied Physics 74, n.º 10 (15 de novembro de 1993): 6247–50. http://dx.doi.org/10.1063/1.355167.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Hallford, Randal, e Preet Sharma. "Non-Hermitian Hamiltonian Treatment of Stark Effect in Quantum Mechanics". Emerging Science Journal 4, n.º 6 (1 de dezembro de 2020): 427–35. http://dx.doi.org/10.28991/esj-2020-01242.

Texto completo da fonte
Resumo:
The Non-Hermitian aspect of Quantum Mechanics has been of great interest recently. There have been numerous studies on non-Hermitian Hamiltonians written for natural processes. Some studies have even expressed the hydrogen atom in a non-Hermitian basis. In this paper the principles of non-Hermitian quantum mechanics is applied to both the time independent perturbation theory and to the time dependant theory to calculate the Stark effect. The principles of spherical harmonics has also been used to describe the development in the non-Hermitian case. Finally, the non-Hermitian aspect has been introduced to the well known Stark effect in quantum mechanics to find a condition in which the Stark effect will still be true even if a non-Hermitian Hamiltonian is used. This study completes the understanding at a fundamental level to understand the well known Stark effect. Doi: 10.28991/esj-2020-01242 Full Text: PDF
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Anwar, S. Jamal, M. Ramzan, M. Usman e M. Khalid Khan. "Entanglement Dynamics of Three and Four Level Atomic System under Stark Effect and Kerr-Like Medium". Quantum Reports 1, n.º 1 (28 de maio de 2019): 23–36. http://dx.doi.org/10.3390/quantum1010004.

Texto completo da fonte
Resumo:
We investigated numerically the dynamics of quantum Fisher information (QFI) and entanglement for three- and four-level atomic systems interacting with a coherent field under the effect of Stark shift and Kerr medium. It was observed that the Stark shift and Kerr-like medium play a prominent role during the time evolution of the quantum systems. The non-linear Kerr medium has a stronger effect on the dynamics of QFI as compared to the quantum entanglement (QE). QFI is heavily suppressed by increasing the value of Kerr parameter. This behavior was found comparable in the cases of three- and four-level atomic systems coupled with a non-linear Kerr medium. However, QFI and quantum entanglement (QE) maintain their periodic nature under atomic motion. On the other hand, the local maximum value of QFI and von Neumann entropy (VNE) decrease gradually under the Stark effect. Moreover, no prominent difference in the behavior of QFI and QE was observed for three- and four-level atoms while increasing the value of Stark parameter. However, three- and four-level atomic systems were found equally prone to the non-linear Kerr medium and Stark effect. Furthermore, three- and four-level atomic systems were found fully prone to the Kerr-like medium and Stark effect.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sakimoto, K. "Multichannel quantum-defect theory of the Stark effect". Journal of Physics B: Atomic and Molecular Physics 19, n.º 19 (14 de outubro de 1986): 3011–25. http://dx.doi.org/10.1088/0022-3700/19/19/015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kulakci, Mustafa, Ugur Serincan, Rasit Turan e Terje G. Finstad. "The quantum confined Stark effect in silicon nanocrystals". Nanotechnology 19, n.º 45 (8 de outubro de 2008): 455403. http://dx.doi.org/10.1088/0957-4484/19/45/455403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior e B. C. Cavenett. "II–VI quantum confined Stark effect waveguide modulators". Applied Physics Letters 68, n.º 7 (12 de fevereiro de 1996): 946–48. http://dx.doi.org/10.1063/1.116107.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Díaz-Fernández, A., e F. Domínguez-Adame. "Quantum-confined Stark effect in band-inverted junctions". Physica E: Low-dimensional Systems and Nanostructures 93 (setembro de 2017): 230–33. http://dx.doi.org/10.1016/j.physe.2017.06.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jianping, Peng, W. S. LI, Gu Shiwei e Y. Y. YEUNG. "Stark Effect of Polarons in Parabolic Quantum Wells". Communications in Theoretical Physics 29, n.º 3 (30 de abril de 1998): 329–36. http://dx.doi.org/10.1088/0253-6102/29/3/329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hildebrandt, J. "High-frequency Stark effect and two-quantum transitions". Journal of Physics B: Atomic, Molecular and Optical Physics 40, n.º 11 (24 de maio de 2007): 2121–33. http://dx.doi.org/10.1088/0953-4075/40/11/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Reyes-Esqueda, Jorge-Alejandro, Carlos I. Mendoza, Marcelo del Castillo-Mussot e Gerardo J. Vázquez. "Stark effect in a wedge-shaped quantum box". Physica E: Low-dimensional Systems and Nanostructures 28, n.º 4 (setembro de 2005): 365–73. http://dx.doi.org/10.1016/j.physe.2005.04.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Qu, Fanyao, e P. C. Morais. "The optical Stark effect in semiconductor quantum wires". Physics Letters A 310, n.º 5-6 (abril de 2003): 460–64. http://dx.doi.org/10.1016/s0375-9601(03)00381-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Rolnik, S., e J. Adamowski. "Stark Effect for Donors in Double Quantum Wells". Acta Physica Polonica A 88, n.º 5 (novembro de 1995): 893–96. http://dx.doi.org/10.12693/aphyspola.88.893.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Robinson, Paul, e Hans Maassen. "Quantum stochastic calculus and the dynamical stark effect". Reports on Mathematical Physics 30, n.º 2 (outubro de 1991): 185–203. http://dx.doi.org/10.1016/0034-4877(91)90024-h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Jae-Hyun Ryou, P. D. Yoder, Jianping Liu, Z. Lochner, Hyunsoo Kim, Suk Choi, Hee Jin Kim e R. D. Dupuis. "Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells". IEEE Journal of Selected Topics in Quantum Electronics 15, n.º 4 (julho de 2009): 1080–91. http://dx.doi.org/10.1109/jstqe.2009.2014170.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rong, Yiwen, Yangsi Ge, Yijie Huo, Marco Fiorentino, Michael R. T. Tan, Theodore I. Kamins, Tomasz J. Ochalski, Guillaume Huyet e James S. Harris Jr. "Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si". IEEE Journal of Selected Topics in Quantum Electronics 16, n.º 1 (janeiro de 2010): 85–92. http://dx.doi.org/10.1109/jstqe.2009.2031502.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Arakawa, T., Y. Kato, F. Sogawa e Y. Arakawa. "Photoluminescence studies of GaAs quantum wires with quantum confined Stark effect". Applied Physics Letters 70, n.º 5 (3 de fevereiro de 1997): 646–48. http://dx.doi.org/10.1063/1.118295.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Chaisakul, Papichaya, Delphine Marris-Morini, Giovanni Isella, Daniel Chrastina, Xavier Le Roux, Eleonora Gatti, Samson Edmond, Johann Osmond, Eric Cassan e Laurent Vivien. "Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures". Optics Letters 35, n.º 17 (24 de agosto de 2010): 2913. http://dx.doi.org/10.1364/ol.35.002913.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Drabinska, A., K. Pakula, J. M. Baranowski e A. Wysmolek. "Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells". Journal of Physics: Conference Series 253 (1 de novembro de 2010): 012009. http://dx.doi.org/10.1088/1742-6596/253/1/012009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Wang, Zhi-Bing, Hui-Chao Zhang e Jia-Yu Zhang. "Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots". Chinese Physics Letters 27, n.º 12 (dezembro de 2010): 127803. http://dx.doi.org/10.1088/0256-307x/27/12/127803.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Gurioli, M., S. Sanguinetti e M. Henini. "Dynamic quantum-confined stark effect in self-assembled InAs quantum dots". Applied Physics Letters 78, n.º 7 (12 de fevereiro de 2001): 931–33. http://dx.doi.org/10.1063/1.1348305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Tobin, Mary S., e John D. Bruno. "Quantum-confined Stark effect modulator based on multiple triple-quantum wells". Journal of Applied Physics 89, n.º 3 (2001): 1885. http://dx.doi.org/10.1063/1.1338517.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Jin-Long, Liu, Li Shu-Shen, Niu Zhi-Chuan, Yang Fu-Hua e Feng Song-Lin. "Quantum-Confined Stark Effect of Vertically Stacked Self-Assembled Quantum Discs". Chinese Physics Letters 20, n.º 8 (30 de julho de 2003): 1336–39. http://dx.doi.org/10.1088/0256-307x/20/8/345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia