Literatura científica selecionada sobre o tema "Quantum stark effect"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum stark effect".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Quantum stark effect"

1

Marie, X., J. Barrau, B. Brousseau, Th Amand, M. Brousseau, N. Lauret, C. Starck e A. Peralès. "Stark effect in quantum-wells". Superlattices and Microstructures 10, n.º 1 (janeiro de 1991): 95–98. http://dx.doi.org/10.1016/0749-6036(91)90155-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Y., H. S. Djie e B. S. Ooi. "Quantum-confined Stark effect in interdiffused quantum dots". Applied Physics Letters 89, n.º 15 (9 de outubro de 2006): 151104. http://dx.doi.org/10.1063/1.2358296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bonilla, L. L., V. A. Kochelap e C. A. Velasco. "Patterns under quantum confined Stark effect". Journal of Physics: Condensed Matter 10, n.º 31 (10 de agosto de 1998): L539—L546. http://dx.doi.org/10.1088/0953-8984/10/31/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

JAZIRI, S., G. BASTARD e R. BENNACEUR. "Stark effect in parabolic quantum dot". Le Journal de Physique IV 03, n.º C5 (outubro de 1993): 367–72. http://dx.doi.org/10.1051/jp4:1993577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pokutnyi, S. I., L. Jacak, J. Misiewicz, W. Salejda e G. G. Zegrya. "Stark effect in semiconductor quantum dots". Journal of Applied Physics 96, n.º 2 (15 de julho de 2004): 1115–19. http://dx.doi.org/10.1063/1.1759791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior e B. C. Cavenett. "quantum confined Stark effect waveguide modulator". Journal of Crystal Growth 159, n.º 1-4 (fevereiro de 1996): 902–5. http://dx.doi.org/10.1016/0022-0248(95)00796-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio e V. R. Velasco. "Stark effect in diffused quantum wells". Superlattices and Microstructures 26, n.º 5 (novembro de 1999): 325–32. http://dx.doi.org/10.1006/spmi.1999.0786.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Gibb, K., C. Lacelle, Q. Sun, E. Fortin e A. P. Roth. "The quantum-confined Stark effect in shallow quantum wells". Canadian Journal of Physics 69, n.º 3-4 (1 de março de 1991): 447–50. http://dx.doi.org/10.1139/p91-073.

Texto completo da fonte
Resumo:
We have investigated the quantum-confined Stark effect for a series of four InGaAs–GaAs single quantum wells using photocurrent spectroscopy. All four samples reveal quadratic Stark shifts for the lowest electron-to-heavy-hole transition at weak electric fields. The field dependence becomes subquadratic at large applied fields. The field dependent reduction of the exciton binding energy is measured and is on the order of a millielectron volt for applied electric fields approaching 80 kV cm−1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Qiu, Ying Ning, Wei Sheng Lu e Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures". Advanced Materials Research 773 (setembro de 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.

Texto completo da fonte
Resumo:
The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Morita, Masahiko, Katsuyuki Goto e Takeo Suzuki. "Quantum-Confined Stark Effect in Stepped-Potential Quantum Wells". Japanese Journal of Applied Physics 29, Part 2, No. 9 (20 de setembro de 1990): L1663—L1665. http://dx.doi.org/10.1143/jjap.29.l1663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Quantum stark effect"

1

Panda, Sudhira. "Quantum confined stark effect and optical properties in quantum wells". Thesis, Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19324303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gibb, Kevin. "The quantum confined Stark effect and Wannier Stark ladders in InxGa1-xAs quantum wells and superlattices". Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7704.

Texto completo da fonte
Resumo:
The effects of an applied bias in the longitudinal or growth direction on four In$\sb{\rm x}$Ga$\sb{\rm 1-x}$As-GaAs strained single quantum wells and three strained layer superlattices have been studied using photocurrent and electroreflectance spectroscopy at liquid helium temperature. Weak applied electric fields on the quantum well samples gives rise to a red quadratic shift to the lowest interband transition between the first confined electron (E1) and heavy-hole (H1) levels, the quantum confined Stark effect (QCSE). The magnitude of the QCSE increases with well width. This field dependence becomes subquadratic at high applied fields due to carrier accumulation on the low energy side of the wells. Superlattices with relatively small periods, i.e. 10 nm, exhibit interwell coupling giving rise to a miniband structure under flatband conditions. The application of an electric field removes the interwell coupling giving rise to a ladder like progression in energy for the interband transition energies, called Wannier Stark ladders. The measured exciton transition energies follow a linear field dependence given by the product of the Stark ladder index, the superlattice period, and the electric field. The low field behaviour is more complex due to the Coulomb interaction between the electrons and heavy-holes. The measured field dependent exciton transition energies for the quantum wells agree well with single particle model calculations, while for the superlattice samples the exciton Stark ladder calculations of Dignam and Sipe have yielded good agreement with the measured data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Huang, Xuan. "Monolithically integrated quantum confined stark effect tuned semiconductor lasers". Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368167.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sala, Matthieu. "Quantum dynamics and laser control for photochemistry". Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS039.

Texto completo da fonte
Resumo:
Cette thèse porte sur la description théorique de processus dynamiques ultra-rapides de molécules polyatomiques et de leur contrôle par impulsions laser. Nous avons d’abord étudié la photochimie de l’aniline à l’aide de calculs de structure électronique. Nous avons d´écrit plusieurs régions clé des surfaces d’énergie potentielle et analysé ces résultats en relation avec les données expérimentales existantes. La photochimie de la pyrazine a été étudiée par des calculs de dynamiques quantique basés sur un Hamiltonien modèle incluant les quatre états électroniques excités de plus basse énergie et seize modes de vibration. Nous montrons que l’état sombre Au(nπ∗) joue un rôle important dans la dynamique de la molécule après photo-excitation. Un modèle simplifié à deux états et quatre modes a été utilisé pour étudier le contrôle par laser de la dynamique de la pyrazine photo-excitée. Nous proposons un mécanisme visant à augmenter la durée de vie de l’état B2u(ππ∗) en utilisant l’effet Stark induit par une impulsion laser intense non-résonante
The central subject of this thesis is the theoretical description of ultrafast dynamical processes in molecular systems of chemical interest and of their control by laser pulses. We first use electronic structure calculations to study the photochemistry of aniline. A umber of previously unknown features of the potential energy surfaces of the low-lying elec-tronic states are reported, and analyzed in relation with the experimental results available. We use quantum dynamics simulations, based on a model Hamiltonian including the four lowest excited electronic states and sixteen vibrational modes, to investigate the photochem-istry of pyrazine. We show that the dark Au(nπ∗) state plays an important role in the ultrafast dynamics of the molecule after photoexcitation. The laser control of the excited state dynamics of pyrazine is studied using a simplified two-state four-mode model Hamiltonian. We propose a control mechanism to enhance the lifetime of the bright B2u(ππ∗) state using the Stark effect induced by a strong non-resonant laser pulse. We finally focus on the laser control of the tunneling dynamics of the NHD2 molecule, using accurate full-dimensional potential energy and dipole moment surfaces. We use simple effective Hamiltonians to explore the effect of the laser parameters on the dynamics and design suitable laser fields to achieve the control. These laser fields are then used in MCTDH quantum dynamics simulations. Both enhancement and suppression of tunneling are achieved in our model
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yeo, Hwee Tiong. "High responsivity tunable step quantum well infrared photodetector". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FYeo.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Badada, Bekele H. "Probing Electronic Band Structure and Quantum Confined States in Single Semiconductor Nanowire Devices". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1470043382.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Malins, David B. "Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructures". Thesis, University of St Andrews, 2008. http://hdl.handle.net/10023/404.

Texto completo da fonte
Resumo:
The quantum confined Stark effect (QCSE) and ultrafast absorption dynamics near the bandedge have been investigated in p-i-n waveguides comprising quantum confined heterostructures grown on GaAs substrates, for emission at 1.3um. The materials are; isolated InAs/InGaAs dot-in-a-well (DWELL) quantum dots (QD), bilayer InAs quantum dots and GaInNAs multiple quantum wells (MQW). The focus was to investigate these dynamics in a planar waveguide geometry, for the purpose of large scale integration in optical systems. Initial measurements of the QCSE using photocurrent measurements showed a small shift for isolated QDs whilst a significant shift of 40nm (at 1340nm) was demonstrated for bilayer dots, comparable to that of GaInNAs MWQ (30nm at 1300nm). These are comparable to InP based quaternary multiple quantum wells used in modulator devices. With the use of a broadband continuum source the isolated quantum dots exhibit both a small QCSE (15nm at 1280nm) and minimal broadening which is desirable for saturable absorbers used in monolithic modelocked semiconductor lasers (MMSL). A robust experimental set-up was developed for characterising waveguide modulators whilst the electroabsorption and electro-refraction was calculated (dn=1.5x10⠻³) using the Kramers-Kronig dispersion relation. Pump probe measurements were performed at room temperature using 250fs pulses from an optical parametric oscillator (OPO) on the three waveguide samples. For the isolated QDs ultrafast absorption recovery was recorded from 62ps (0V) to 700fs (-10V and the shortest times shown to be due to tunneling. Additionally we have shown good agreement of the temperature dependence of these dots and the pulse width durations from a modelocked semiconductor laser using the same material. Bilayer QDs are shown to exhibit ultrafast absorption recovery from 119ps (0V) to 5ps (-10V) offering potential for applications as modelocking elements. The GaInNAs multiple quantum wells show absorption recovery of 55ps (0V), however under applied reverse bias they exhibit long lived field screening transients. These results are explained qualitatively by the spatial separation of electrons and holes at heterobarrier interfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Aganoglu, Ruzin. "Non-linear Optical Properties Of Two Dimensional Quantum Well Structures". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/3/12607089/index.pdf.

Texto completo da fonte
Resumo:
In this work optical properties of two dimensional quantum well structures are studied. Variational calculation of the eigenstates in an isolated quantum well structure with and without the external electrical field is presented. At weak fields a quadratic Stark shift is found whose magnitude depends strongly on the finite well depth. It is observed that under external electrical field, the asymmetries due to lack of inversion symmetry leads to higher order nonlinear optical effects such as second order optical polarization and second order optical susceptibility.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ramanathan, Sivakumar. "Optical Characterization of Electrochemically Self-Assembled Compound Semiconductor Nanowires". VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1436.

Texto completo da fonte
Resumo:
Semiconductor nanowires have attracted considerable attention as possible source for lasers and optical storage media. We report the fabrication and optical characterization of ZnO and CdS nanowires. The former are produced by electrochemical deposition of Zn inside nanoporous alumina films containing regimented arrays of 10nm, 25nm and 50 nm diameter pores, followed by room temperature chemical oxidization. Fluorescence spectroscopy shows different characteristics associated with different sample diameter. The 50 nm ZnO nanowires show an exciton recombination peak and an additional peak related to the deep trap levels. 25 nm ZnO nanowires show a only the exciton recombination peak, which is red shifted, possibly due to quantum confined Stark effect associated with built in charges in the alumina. This feature can be exploited to produce light emitting devices whose frequency can be modulated with an external electric field. Such devices could be novel ultra-violet frequency modulators for optical communication and solar blind materials. In addition, we have investigated fluorescence spectra of 10-, 25- and 50-nm diameter CdS nanowires (relative dielectric constant = 5.4) self assembled in a porous alumina matrix (relative dielectric constant = 8-10). The spectra reveal peaks associated with free electron-hole recombination. The 10-nm wire spectra show an additional lower energy peak due to exciton recombination. In spite of dielectric de-confinement caused by the insulator having a higher dielectric constant than the semiconductor, the exciton binding energy increases almost 8-fold from its bulk value in the 10 nm wires. This increase is most likely due to quantum confinement accruing from the fact that the exciton Bohr radius (~5 nm) is comparable to or larger than the wire radius, especially if side depletion is taken into account. Such an increase in the binding energy could be exploited to make efficient room temperature luminescent devices in the visible range.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Donon, Jeremy. "Caractérisation de paires d’ions par spectroscopies IR, UV et rayons X, interprétées par calculs de chimie quantique". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS106.

Texto completo da fonte
Resumo:
Les paires d'ions sont omniprésentes dans la nature, depuis l'eau de mer, les aérosols, jusqu'aux organismes vivants. Elles influencent les propriétés des solutions concentrées en ions, et jouent ainsi un rôle majeur dans divers réactions chimiques et processus biologiques. Cependant, la caractérisation des paires d’ions se heurte à une double difficulté : d'une part, plusieurs types de paires coexistent, et d'autre part, ce sont des espèces transitoires en solution. Dans ce contexte, ce travail présente plusieurs études menées selon trois axes de recherche principaux grâce à une approche originale en phase gazeuse, puis en solution. Le premier axe consiste à étudier les effets du champ électrique produit par la paire d’ions sur la spectroscopie d’un chromophore UV en phase gazeuse (effets Stark). Les groupes ioniques sont capables de produire un champ électrique suffisamment élevé pour induire des effets Stark électroniques significatifs sur un chromophore UV situé à proximité. Cette étude est menée sur des systèmes modèles de formule générale (C₆H₅-(CH₂)n₋COO⁻,M⁺) avec M = Li, Na, K, Rb, Cs et n = 1-3, permettant de faire varier le champ électrique ressenti par le chromophore UV. Ces différents systèmes sont étudiés en phase gazeuse par spectroscopie UV combinée à des calculs de chimie quantique, ainsi que par des expériences de spectroscopie IR sélective en conformation. Grâce à cette approche, des attributions conformationnelles précises peuvent être proposées pour des transitions électroniques séparées de quelques cm-1, sur la base de l’analyse des effets Stark observés sur le spectre UV, sans recourir à la spectroscopie IR, ni aux calculs de fréquences. Il s’agit ensuite de comprendre les effets d’environnement sur les paires d’ions par des expériences de microsolvatation en phase gazeuse. La paire d’ions d’acétate de sodium [CH₃-COO⁻,Na⁺] est étudiée pour la première fois dans un complexe trimère avec le p-xylène par spectroscopie IR. Des expériences de microhydratation sont ensuite réalisées sur des paires d’ions chargées ([CH₃-COO⁻,M²⁺] ; M = Ca, Ba), mettant en évidence deux comportements différents en fonction de la nature du dication. Les différentes expériences montrent que la signature IR du groupement carboxylate est sensible à son environnement proche, mais également à l’environnement du cation qui lui est apparié. Le dernier axe consiste à détecter et identifier les structures formées par les ions dans les solutions électrolytiques par spectroscopies IR et RX. Une première analyse est effectuée sur des solutions électrolytiques ([CH₃-COO⁻,M⁺] ; M = Li, Na et K) par spectroscopie IR-TF en variant la concentration en ions. Une étude théorique est ensuite réalisée dans l’objectif de proposer un spectre théorique pour chaque type de paires, et de les confronter aux spectres expérimentaux en solution. L’approche repose sur le calcul de la signature IR de paires ([CH₃-COO⁻,M⁺] ; M = Li, Na, K, Rb et Cs) et de l’anion libre, entourés successivement de molécules d’eau explicites décrites au niveau chimie quantique, puis au niveau champ de force et enfin par un modèle de solvant continu. Pour chaque type de paires, des familles spectroscopiques compatibles avec les données expérimentales sont identifiées. Cette approche originale ouvre la voie vers l’identification des structures supramoléculaires dans les solutions électrolytiques. Enfin, la première expérience FZRET en micro-jet liquide est réalisée sur une solution d’acétate de potassium, donnant accès à une mesure de la distribution des distances entre cations et anions appariés. Au cours de ces études, différentes méthodes sont employées allant de l’expérience à la théorie, de la phase gazeuse à la solution. Cette thèse illustre la nécessité de combiner plusieurs méthodes afin d’obtenir des données complémentaires permettant une meilleure caractérisation de l’organisation supramoléculaire des ions et de leur environnement
Ion pairs are ubiquitous in nature, from sea water, aerosols, to living organisms. They influence the properties of concentrated ion solutions, and thus play a crucial role in various chemical reactions and biological processes. However, the characterization of ion pairs faces some difficulties: on one hand, several types of pairs coexist, and on the other hand, they are transient species in solution. In this context, this work presents several studies carried out according to three main research studies, backed by an original approach in the gas phase, and then in solution. Firstly, the effects of the electric field produced by the ion pair on the UV spectroscopy of a chromophore in gas phase (Stark effects) are studied. The ion groups can produce an electric field high enough to induce significant electronic Stark effects on a nearby UV chromophore. This study is conducted on model systems (C₆H₅-(CH₂)n-COO⁻,M⁺) with M = Li, Na, K, Rb, Cs and n = 1-3, allowing to vary the electric field experienced by the UV chromophore. These different systems are studied in the gas phase by UV spectroscopy combined with quantum chemistry calculations, as well as by conformation selective IR spectroscopy. Based on the analysis of the electronic Stark effects, precise conformational assignments can be proposed for electronic transitions separated by a few cm-1, without resorting to IR spectroscopy, or frequency calculations. The next study is focused mainly on understanding the environmental effects on ion pairs by microsolvation experiments in gas phase. The pair of sodium acetate ions [CH₃-COO⁻,Na⁺] is studied for the first time in a trimer complex with p-xylene by IR spectroscopy. Microhydration experiments are then carried out on charged ion pairs ([CH₃-COO⁻,M²⁺]; M = Ca, Ba), highlighting two different behaviours depending on the nature of the cation. The final research is to detect and identify the structures formed by the ions in electrolytic solutions by IR and RX spectroscopy. The first experiment is carried out on electrolytic solutions ([CH₃-COO⁻,M⁺]; M = Li, Na and K) by TF-IR spectroscopy by varying the ion concentration. A theoretical study is then carried out in order to propose a theoretical spectrum for each type of pair, and to confront them with experimental spectra in solution. The approach is based on the calculation of the IR signature of pairs ([CH₃-COO⁻,M⁺]; M = Li, Na, K, Rb and Cs) and free anion in solution, where the first solvation layer were described at the quantum level, followed by a solvent continuum. For each type of pair, spectroscopic families, consistent with the experimental data, are identified. This original approach paves way to the identification of supramolecular structures in electrolytic solutions. Finally, the first FZRET experiment in liquid micro-jet is carried out on a potassium acetate solution, providing access to a measurement of the distance distribution between cations and paired anions.In these studies, different methods are used ranging from experiment to theory, from the gas phase to solution. This work illustrates the need to combine several methods in order to obtain additional data and allow a better characterization of the supramolecular organisation of ions and their environment
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Quantum stark effect"

1

Fröman, Nanny. Stark effect in a hydrogenic atom or ion: Treated by the phase-integral method. London: Imperial College Press, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Esposito, Aniello. Band structure effects and quantum transport. Konstanz: Hartung-Gorre, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Guangjun, Mao, ed. Relativistic microscopic quantum transport equation. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

V, Chang John, ed. Trends in condensed matter physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Magdalena, Nuñez, ed. Progress in electrochemistry research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

B, Elliot Thomas, ed. Focus on semiconductor research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Magdalena, Nuñez, ed. Metal electrodeposition. Hauppauge, NY: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

P, Wass Andrew, ed. Progress in neutron star research. New York: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

P, Norris Charles, ed. Surface science: New research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

N, Linke A., ed. Progress in chemical physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Quantum stark effect"

1

Hentschel, Klaus. "Stark Effect". In Compendium of Quantum Physics, 738–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Schwabl, Franz. "The Zeeman Effect and the Stark Effect". In Quantum Mechanics, 251–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02703-5_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Schwabl, Franz. "The Zeeman Effect and the Stark Effect". In Quantum Mechanics, 257–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04840-5_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Schwabl, Franz. "The Zeeman Effect and the Stark Effect". In Quantum Mechanics, 257–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03170-4_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Adams, Barry G. "Tables of Stark Effect Energy Corrections". In Algebraic Approach to Simple Quantum Systems, 281–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57933-2_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Adams, Barry G. "Symbolic Calculation of the Stark Effect". In Algebraic Approach to Simple Quantum Systems, 137–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57933-2_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

de Sousa, J. S., J. P. Leburton, V. N. Freire e E. F. da Silva. "Intraband Absorption and Stark Effect in Silicon Nanocrystals". In Physical Models for Quantum Dots, 885–906. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-57.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Deych, Lev I. "Perturbation Theory for Stationary States: Stark Effect and Polarizability of Atoms". In Advanced Undergraduate Quantum Mechanics, 429–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71550-6_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Thean, A., e J. P. Leburton. "Stark Effect and Single-Electron Charging in Silicon Nanocrystal Quantum Dots". In Physical Models for Quantum Dots, 815–34. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kobayashi, Masahide, Hiroyuki Sumitomo, Yutaka Kadoya, Masamichi Yamanishi e Masahito Ueda. "Diode Structure for Generation of Sub-Poissonian Photon Fluxes by Stark-Effect Blockade of Emissions". In Quantum Communication, Computing, and Measurement, 503–12. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_55.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Quantum stark effect"

1

Casado, E., e C. Trallero-Giner. "Stark effect in spherical quantum dots". In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51199.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shen, H., J. Pamulapati, W. Zhou e F. G. Johnson. "Quantum-confined Stark effect in partially strained quantum wells". In Technical Digest Summaries of papers presented at the Conference on Lasers and Electro-Optics Conference Edition. 1998 Technical Digest Series, Vol.6. IEEE, 1998. http://dx.doi.org/10.1109/cleo.1998.676056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Prior, Yehiam, J. E. Golub, P. F. Liao, D. J. Eilenberger, J. P. Harbison e L. T. Florez. "Quantum Confined Stark Effect In Asymmetric Double Quantum Wells". In Intl Conf on Trends in Quantum Electronics, editado por Ioan Ursu. SPIE, 1989. http://dx.doi.org/10.1117/12.950623.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Turchinovich, Dmitry, Boris S. Monozon, Daniil A. Livshits, Edik U. Rafailov e Matthias C. Hoffmann. "THz quantum-confined Stark effect in semiconductor quantum dots". In SPIE OPTO. SPIE, 2012. http://dx.doi.org/10.1117/12.906448.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Andrews, Joseph Thomas, e Pratima Sen. "Dynamical Stark effect in small quantum dots". In Symposium on High-Power Lasers and Applications, editado por Henry Helvajian, Koji Sugioka, Malcolm C. Gower e Jan J. Dubowski. SPIE, 2000. http://dx.doi.org/10.1117/12.387566.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Khurgin, J. B., S. J. Lee, N. M. Lawandy e S. Li. "Dynamic Wannier-Stark Effect and Superradiance Switching in Semiconductor Superlattices". In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.jwb4.

Texto completo da fonte
Resumo:
We investigate the possibility of observing the transition between the localized states and the extended states in semiconductor superlattices (SL) in the presence of strong external ac field. i.e., the dynamic Wannier-Stark effect [1] and by switching of superradiance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Harmin, David A. "Multichannel quantum-defect theory of the Stark effect". In International conference on the physics of electronic and atomic collisions. AIP, 1990. http://dx.doi.org/10.1063/1.39192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Panajotov, Krassimir, Vlad Badilita, Jean-Francois Carlin, Hugo Thienpont e Irina Veretennicoff. "Quantum confined Stark effect in coupled-cavity VCSELs". In Photonics Europe, editado por Hugo Thienpont, Kent D. Choquette e Mohammad R. Taghizadeh. SPIE, 2004. http://dx.doi.org/10.1117/12.544773.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ishikawa, Takuya, Yuen Chuen Chan e Kunio Tada. "Enhanced quantum-confined Stark effect in potential modified quantum-well structures". In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ipr.1990.tug3.

Texto completo da fonte
Resumo:
Rectangular single quantum-well (QW) structures have been known for their large field-induced absorption coefficient variations, which are several magnitudes that of bulk materials. This is due to the well-known quantum-confined Stark effect (QCSE),1 which basically red shifts the fundamental exciton absorption edge quadratically with the electric field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kłopotowski, Ł., A. Kudelski, P. Wojnar, A. I. Tartakovskii, M. S. Skolnick, O. Krebs, P. Voisin et al. "Quantum Confined Stark Effect in Single Self-Assembled CdTe Quantum Dots". In PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors. AIP, 2010. http://dx.doi.org/10.1063/1.3295445.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Quantum stark effect"

1

Hayduk, Michael J., Mark F. Krol e Raymond K. Boncek. Heterostructure Quantum Confined Stark Effect Electrooptic Modulators Operating at 938 nm. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1993. http://dx.doi.org/10.21236/ada279342.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mu, R., A. Ueda, Y. S. Tung, D. O. Henderson, J. G. Zhu, J. D. Budai e C. W. White. Stark effects on band gap and surface phonons of semiconductor quantum dots in dielectric hosts. Office of Scientific and Technical Information (OSTI), janeiro de 1996. http://dx.doi.org/10.2172/219349.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia