Literatura científica selecionada sobre o tema "Quantum magnetisms"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum magnetisms".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Quantum magnetisms"
Stewart, A. M. "Gauge Invariant Magnetism". Australian Journal of Physics 50, n.º 6 (1997): 1061. http://dx.doi.org/10.1071/p97024.
Texto completo da fonteOsborne, Ian S. "Cooperative quantum magnetism". Science 361, n.º 6404 (23 de agosto de 2018): 763.14–765. http://dx.doi.org/10.1126/science.361.6404.763-n.
Texto completo da fonteFreeman, Arthur J., e Kohji Nakamura. "Computational quantum magnetism: Role of noncollinear magnetism". Journal of Magnetism and Magnetic Materials 321, n.º 7 (abril de 2009): 894–98. http://dx.doi.org/10.1016/j.jmmm.2008.11.107.
Texto completo da fonteSlot, M. R., Y. Maximenko, P. M. Haney, S. Kim, D. T. Walkup, E. Strelcov, Son T. Le et al. "A quantum ruler for orbital magnetism in moiré quantum matter". Science 382, n.º 6666 (6 de outubro de 2023): 81–87. http://dx.doi.org/10.1126/science.adf2040.
Texto completo da fonteSachdev, Subir. "Quantum magnetism and criticality". Nature Physics 4, n.º 3 (março de 2008): 173–85. http://dx.doi.org/10.1038/nphys894.
Texto completo da fonteInosov, D. S. "Quantum magnetism in minerals". Advances in Physics 67, n.º 3 (3 de julho de 2018): 149–252. http://dx.doi.org/10.1080/00018732.2018.1571986.
Texto completo da fonteBlackburn, Elizabeth. "Magnetism, superconductors, quantum systems". Neutron News 24, n.º 4 (outubro de 2013): 6–7. http://dx.doi.org/10.1080/10448632.2013.831644.
Texto completo da fonteCastilla, G., S. Chakravarty e V. J. Emery. "Quantum Magnetism of CuGeO3". Physical Review Letters 75, n.º 9 (28 de agosto de 1995): 1823–26. http://dx.doi.org/10.1103/physrevlett.75.1823.
Texto completo da fonteKUZEMSKY, A. L. "QUANTUM PROTECTORATE AND MICROSCOPIC MODELS OF MAGNETISM". International Journal of Modern Physics B 16, n.º 05 (20 de fevereiro de 2002): 803–23. http://dx.doi.org/10.1142/s0217979202010002.
Texto completo da fonteGeorgii, Robert, e Klaus-Dieter Liss. "Quantum Beams for New Aspects in Magnetic Materials and Magnetism". Quantum Beam Science 3, n.º 4 (25 de novembro de 2019): 22. http://dx.doi.org/10.3390/qubs3040022.
Texto completo da fonteTeses / dissertações sobre o assunto "Quantum magnetisms"
Catalano, Alberto Giuseppe. "Understanding and exploiting non-local effects in quantum spin chains". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF022.
Texto completo da fonteAt the verge of the second quantum revolution, understanding and exploiting the phenomena resulting from the interplay between the intrinsic non-locality of quantum mechanics and purely non-local interactions is of crucial importance for the development of novel quantum technologies. In this thesis, we will mostly focus on the non-local effects introduced by topological frustration (TF), a form of weak frustration that was first introduced in the context of antiferromagnetic quantum spin chains by applying the so called frustrated boundary conditions, realized as a combination of periodic boundary conditions and odd number of spins. Our goal is double. From one side, we will further improve the theoretical understanding of topologically frustrated phases. Beyond these theoretical implications, this work will demonstrate that TF spin chains exhibit compelling technological potential, proposing them as competitive candidates for the development of robust and efficient quantum batteries
Joshi, Darshan Gajanan. "Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-198634.
Texto completo da fonteRezakhanlou, Karen. "Orbital magnetism and quantum chaos /". [S.l.] : [s.n.], 1995. http://library.epfl.ch/theses/?nr=1312.
Texto completo da fonteBrambleby, Jamie. "Quantum magnetism in coordination polymers". Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/111284/.
Texto completo da fonteAguilà, Avilés David. "Design, synthesis and study of coordination complexes for quantum computing". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/123544.
Texto completo da fonteEl trabajo realizado en esta tesis doctoral se basa en el diseño, la síntesis y el estudio de complejos de coordinación, centrándose en la comprensión de sus propiedades magnéticas y la posibilidad de su aplicación en la computación cuántica. Para el diseño de estos materiales moleculares, tres diferentes propuestas han sido llevadas a cabo. En primer lugar, se han desarrollado ligandos capaces de agregar metales paramagnéticos en dos grupos diferentes, definiendo de esta manera los dos posibles bits cuánticos de una puerta lógica. Complejos de coordinación homo- y heterometálicos con NiII, CoII y CuII han sido sintetizados y caracterizados para tal efecto. La segunda estrategia seguida ha estado centrada en el diseño de complejos de coordinación lineales para su posterior ensamblaje en parejas de compuestos. Se han desarrollado ligandos que favorezcan la complejación de este tipo de topología, obteniéndose un compuesto de CoII con las propiedades estructurales idóneas para su ensamblaje. Utilizando el ligando bifuncional 4.4’-bipiridina, se ha podido unir dos entidades [Co4] obteniendo así otro prototipo de “parejas moleculares”. La tercera estrategia se ha centrado en el diseño de moléculas asimétricas para facilitar la definición de cada bit cuántico dentro de la entidad molecular. Para ello, se ha sintetizado un ligando no simétrico, que ha sido utilizado para obtener complejos dinucleares homo- y heterometálicos de iones lantánido. Se ha obtenido compuestos con todos los elementos de la serie de los lantánidos. Su estudio magnético y estructural ha mostrado que los dos centros metálicos de estas entidades moleculares son distintos, lo que ha permitido definir el espín de cada ion lantánido como un bit cuántico. El estudio magnético a muy bajas temperaturas de un compuesto de dos átomos de terbio(III), por ejemplo, ha permitido definir dos puertas lógicas: la CNOT y la √SWAP. Utilizando el espectro de energías de los estados magnéticos de la molécula, se han observado las transiciones entre dichos estados en relación a las dos operaciones lógicas.
Steele, Andrew J. "Quantum magnetism probed with muon-spin relaxation". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:030d7e91-f38e-433f-9539-652b0f4996cc.
Texto completo da fonteFiore, Mosca Dario. "Quantum magnetism in relativistic osmates from first principles". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17982/.
Texto completo da fonteBühler, Adam [Verfasser]. "Quantum Simulator for Spin-Orbital Magnetism / Adam Bühler". München : Verlag Dr. Hut, 2016. http://d-nb.info/1097818373/34.
Texto completo da fonteLorenz, Wolfram. "On the Spin-Dynamics of the Quasi-One-Dimensional, Frustrated Quantum Magnet Li2CuO2". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71010.
Texto completo da fonteThe magnetic properties of Li2CuO2 have attracted interest since more than two decades, both in theory and experiment. Despite these efforts, the precise nature of the magnetic interactions in this insulator remained an issue of controversial debate. From theoretical studies, the compound was understood as a quasi-one-dimensional magnet with strong ferromagnetic interactions along the chain, while in contrast, experimentally studies suggested dominant three-dimensional inter-chain interactions. In this thesis, the leading magnetic exchange interactions of Li2CuO2 are determined on the basis of a detailed inelastic neutron scattering study of the magnetic excitation spectrum, analyzed within spin-wave theory. It is unequivocally shown, that the material represents a quasi-one-dimensional spin-chain compound. In particular, the competition of ferro- and antiferromagnetic interactions in the chain has been evidenced. The applicability of a spin-wave model for analysis of this low-dimensional spin-1=2 system is shown. The magnetic phase diagram of Li2CuO2 is studied by specific heat, thermal expansion and magnetostriction measurements as well as magnetization measurements in both static and pulsed magnetic fifields. The phase diagram is discussed with respect to the exchange interactions. With its simple crystallographic and magnetic structure, Li2CuO2 may serve as a worthwhile model system in the class of spin-chain compounds with competing ferromagnetic and antiferromagnetic interactions
Morris, Richard. "Studies towards quantum magnonics". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:89784b64-de31-457f-b9b2-54125c862632.
Texto completo da fonteLivros sobre o assunto "Quantum magnetisms"
Barbara, Bernard, Yosef Imry, G. Sawatzky e P. C. E. Stamp, eds. Quantum Magnetism. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8512-3.
Texto completo da fonteSchollwöck, Ulrich, Johannes Richter, Damian J. J. Farnell e Raymod F. Bishop, eds. Quantum Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96825.
Texto completo da fonteBernard, Barbara, ed. Quantum magnetism. Dordrecht: Springer, 2008.
Encontre o texto completo da fonteYoshihito, Miyako, Takayama H. 1945- e Miyashita S. 1954-, eds. Frontiers in magnetism: Metallic magnetism, glassy magnetism, quantum magnetism. Tokyo: Physical Society of Japan, 2000.
Encontre o texto completo da fonteWhite, Robert M. Quantum Theory of Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-69025-2.
Texto completo da fonteNolting, Wolfgang, e Anupuru Ramakanth. Quantum Theory of Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85416-6.
Texto completo da fonteAnupuru, Ramakanth, e SpringerLink (Online service), eds. Quantum theory of magnetism. Heidelberg: Springer, 2009.
Encontre o texto completo da fonteAuerbach, Assa. Interacting Electrons and Quantum Magnetism. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0869-3.
Texto completo da fonteAuerbach, Assa. Interacting electrons and quantum magnetism. New York: Springer-Verlag, 1994.
Encontre o texto completo da fonteViola Kusminskiy, Silvia. Quantum Magnetism, Spin Waves, and Optical Cavities. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13345-0.
Texto completo da fonteCapítulos de livros sobre o assunto "Quantum magnetisms"
Parkinson, John B., e Damian J. J. Farnell. "Quantum Magnetism". In An Introduction to Quantum Spin Systems, 135–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13290-2_11.
Texto completo da fonteAeppli, Gabriel, e Philip Stamp. "Quantum Magnetism". In Handbook of Magnetism and Magnetic Materials, 261–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_5.
Texto completo da fonteAeppli, Gabriel, e Philip Stamp. "Quantum Magnetism". In Handbook of Magnetism and Magnetic Materials, 1–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_5-1.
Texto completo da fonteSchnack, Jürgen. "Molecular magnetism". In Quantum Magnetism, 155–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119593.
Texto completo da fonteMikeska, Hans-Jürgen, e Alexei K. Kolezhuk. "One-dimensional magnetism". In Quantum Magnetism, 1–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119591.
Texto completo da fonteRichter, Johannes, Jörg Schulenburg e Andreas Honecker. "Quantum magnetism in two dimensions: From semi-classical Néel order to magnetic disorder". In Quantum Magnetism, 85–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119592.
Texto completo da fonteIvanov, Nedko B., e Diptiman Sen. "Spin wave analysis of heisenberg magnets in restricted geometries". In Quantum Magnetism, 195–226. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119594.
Texto completo da fonteLaflorencie, Nicolas, e Didier Poilblanc. "Simulations of pure and doped low-dimensional spin-1/2 gapped systems". In Quantum Magnetism, 227–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119595.
Texto completo da fonteCabra, Daniel C., e Pierre Pujol. "Field-theoretical methods in quantum magnetism". In Quantum Magnetism, 253–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119596.
Texto completo da fonteFarnell, Damian J. J., e Raymond F. Bishop. "The coupled cluster method applied to quantum magnetism". In Quantum Magnetism, 307–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119597.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Quantum magnetisms"
Gavryusev, Vladislav, Luca Guariento, Veronica Giardini, Andrea Fantini, Shawn Storm, Jacopo Catani, Massimo Inguscio, Leonardo Fallani e Giacomo Cappellini. "A New Programmable Quantum Simulator with Strontium Rydberg Atoms in Optical Tweezer Arrays". In Quantum 2.0, QTh2A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2a.2.
Texto completo da fonteOliveira, Samuel L., e Stephen C. Rand. "Optical magnetism". In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431630.
Texto completo da fonteKimel, A. V., A. Kirilyuk e Th Rasing. "Femtosecond opto-magnetism". In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431810.
Texto completo da fonteHaas, Stephan, Adolfo Avella e Ferdinando Mancini. "Quantum Magnetism, Nanomagnets and Entanglement". In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XII: Twelfth Training Course in the Physics of Strongly Correlated Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2940446.
Texto completo da fonteDegen, Christian, e Pol Welter. "Quantum microscopy of nanoscale magnetism". In Spintronics XIV, editado por Henri-Jean M. Drouhin, Jean-Eric Wegrowe e Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2597939.
Texto completo da fonteFisher, William M., e Stephen C. Rand. "Parametric Optical Magnetism and the Complex Mathieu Equation". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ituf3.
Texto completo da fonteMajedi, Hamed. "Nonlinear Optics and Optomagnetics in Quantum Materials". In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.tu2b.5.
Texto completo da fonteVenkataramana, Bonu, A. Das, Manas Sardar, S. Dhara e A. K. Tyagi. "Intrinsic high magnetism in SnO2 quantum dots". In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872649.
Texto completo da fonteSakai, Tôru, e Kiyomi Okamoto. "Exotic Magnetism of the Quantum Spin Nanotubes". In Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.2.010208.
Texto completo da fontePorras, D., e J. I. Cirac. "Simulation of quantum magnetism with trapped ions". In Moscow, Russia, editado por Yuri I. Ozhigov. SPIE, 2005. http://dx.doi.org/10.1117/12.620491.
Texto completo da fonteRelatórios de organizações sobre o assunto "Quantum magnetisms"
Scheie, Allen. Quantum magnetism, philosophy, and neutron scattering. Office of Scientific and Technical Information (OSTI), maio de 2024. http://dx.doi.org/10.2172/2367470.
Texto completo da fonteLee, Minhyea. Transport Studies of Quantum Magnetism: Physics and Methods. Office of Scientific and Technical Information (OSTI), março de 2017. http://dx.doi.org/10.2172/1349030.
Texto completo da fonteLi, Yi, Hsiang-hsuan Hung, Zi Cai, Congjun Wu, Wei-Cheng Li e Dan Arovas. Novel Quantum States with Exotic Spin Properties - Unconventional Generalization of Magnetism. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2011. http://dx.doi.org/10.21236/ada582118.
Texto completo da fonteSharpe, Aaron. Emergent Quantum Magnetism and Cryogenic Spin-Memory in Twisted Bilayer Graphene. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2430210.
Texto completo da fonte