Literatura científica selecionada sobre o tema "Quantum electronics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum electronics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy". American Journal of Applied sciences 03, n.º 01 (30 de janeiro de 2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Texto completo da fonteZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith e Mark A. Eriksson. "Silicon quantum electronics". Reviews of Modern Physics 85, n.º 3 (10 de julho de 2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Texto completo da fonteSAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, n.º 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Texto completo da fonteGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li et al. "Low-latency readout electronics for dynamic superconducting quantum computing". AIP Advances 12, n.º 4 (1 de abril de 2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Texto completo da fonteBorgarino, Mattia, e Alessandro Badiali. "Quantum Gates for Electronics Engineers". Electronics 12, n.º 22 (15 de novembro de 2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Texto completo da fonteLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood e Edward H. Sargent. "Colloidal quantum dot electronics". Nature Electronics 4, n.º 8 (agosto de 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Texto completo da fonteTaichenachev, Alexey V. "Department of Quantum Electronics". Siberian Journal of Physics 1, n.º 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Texto completo da fonteSinclair, B. D. "Lasers and quantum electronics". Physics Bulletin 37, n.º 10 (outubro de 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Texto completo da fonteDragoman, M., e D. Dragoman. "Graphene-based quantum electronics". Progress in Quantum Electronics 33, n.º 6 (novembro de 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Texto completo da fonteRost, Jan-Michael. "Tubes for quantum electronics". Nature Photonics 4, n.º 2 (fevereiro de 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Texto completo da fonteTeses / dissertações sobre o assunto "Quantum electronics"
Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. "Quantum waveguide theory". University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Texto completo da fonteLynch, Alastair M. "Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Texto completo da fonteHinzer, Karin. "Semiconductor quantum dot lasers". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Texto completo da fonteEl, Kass Abdallah. "Milli-Kelvin Electronics at the Quantum-Classical Interface". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Texto completo da fonteLittle, Reginald Bernard. "The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Texto completo da fonteNakanishi, Toshihiro. "Coupled-resonator-based metamaterials emulating quantum systems". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Texto completo da fonteKhalid, Ahmed Usman. "FPGA emulation of quantum circuits". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Texto completo da fonteMcNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Texto completo da fonteJiang, Jun. "A Quantum Chemical View of Molecular and Nano-Electronics". Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Texto completo da fonteLivros sobre o assunto "Quantum electronics"
R, Whinnery John, ed. Quantum electronics. New York: IEEE, 1992.
Encontre o texto completo da fonteSalter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Encontre o texto completo da fonteKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Encontre o texto completo da fonteKose, Volkmar, ed. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Texto completo da fonteVolkmar, Kose, e Albrecht M, eds. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Encontre o texto completo da fonteProkhorov, A. M., e I. Ursu, eds. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Texto completo da fonteHirayama, Yoshiro, Kazuhiko Hirakawa e Hiroshi Yamaguchi, eds. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Texto completo da fonteInstitute of Electrical and Electronics Engineers., ed. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Encontre o texto completo da fonteIEEE Lasers and Electro-Optics Society. e Institute of Electrical and Electronics Engineers., eds. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Encontre o texto completo da fonteConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Quantum electronics"
Goser, Karl, Peter Glösekötter e Jan Dienstuhl. "Quantum Electronics". In Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Texto completo da fonteKolawole, Michael Olorunfunmi. "Elements of Quantum Electronics". In Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Texto completo da fonteSuits, Bryan H. "Quantum Logic". In Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Texto completo da fonteKawabata, A. "Quantum Wires". In Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Texto completo da fontePevzner, Vadim, e Karl Hess. "Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems". In Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Texto completo da fonteVan Haesendonck, C., e Y. Bruynseraede. "Quantum Interference in Normal Metals". In Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Texto completo da fonteLübbig, H. "Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations". In Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Texto completo da fonteGutmann, P., e H. Bachmair. "Cryogenic Current Comparator Metrology". In Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Texto completo da fonteAlbrecht, M., e W. Kessel. "Fast SQUID Pseudo Random Generators". In Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Texto completo da fonteBrunk, G. "Modelling of Resistive Networks for Dispersive Tunnel Processes". In Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Quantum electronics"
Arnold, John M. "Teaching quantum electronics to electronic engineering undergraduates". In Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Texto completo da fonteKrokhin, O. N. "Quantum Electronics 50th Jubilee". In SPIE Proceedings, editado por Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik e Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Texto completo da fonteSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler e W. Tittel. "Quantum Memory For Quantum Repeaters". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Texto completo da fonteSchneider, Hans Christian, e Weng W. Chow. "Quantum coherence in semiconductor quantum dots". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Texto completo da fonte"2005 European Quantum Electronics Conference". In EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Texto completo da fonte"Joint Council on Quantum Electronics". In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Texto completo da fonteBishnoi, Dimple. "Quantum dots: Rethinking the electronics". In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Texto completo da fonteKrokhin, O. N. "Fifty Years of Quantum Electronics". In ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Texto completo da fonteSenami, Masato, e Akitomo Tachibana. "Quantum chemical approaches to the electronic structures of nano-electronics materials". In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Texto completo da fonteFurusawa, Akira. "Quantum Teleportation and Quantum Information Processing". In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Texto completo da fonteRelatórios de organizações sobre o assunto "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maio de 2014. http://dx.doi.org/10.21236/ada604108.
Texto completo da fonteBocko, Mark F., e Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1998. http://dx.doi.org/10.21236/ada344625.
Texto completo da fonteO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1994. http://dx.doi.org/10.21236/ada298817.
Texto completo da fontevan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, março de 2021. http://dx.doi.org/10.53109/ypdh3824.
Texto completo da fonteElmgren, Karson, Ashwin Acharya e Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, novembro de 2021. http://dx.doi.org/10.51593/20210003.
Texto completo da fonteBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1630711.
Texto completo da fonteFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maio de 1992. http://dx.doi.org/10.21236/ada253666.
Texto completo da fonteGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1990. http://dx.doi.org/10.21236/ada218772.
Texto completo da fonteSchoelkopf, R. J., e S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada442606.
Texto completo da fonteSchoelkopf, R. J., e S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada465023.
Texto completo da fonte