Literatura científica selecionada sobre o tema "Quantum double model"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum double model".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Quantum double model"
Favalli, T., e A. Smerzi. "A model of quantum spacetime". AVS Quantum Science 4, n.º 4 (dezembro de 2022): 044403. http://dx.doi.org/10.1116/5.0107210.
Texto completo da fonteFiedler, Leander, e Pieter Naaijkens. "Haag duality for Kitaev’s quantum double model for abelian groups". Reviews in Mathematical Physics 27, n.º 09 (outubro de 2015): 1550021. http://dx.doi.org/10.1142/s0129055x1550021x.
Texto completo da fonteChen, Lei, Zhen-Yu Wang, Wu Hui, Cheng-Yu Chu, Ji-Min Chai, Jin Xiao, Yu Zhao e Jin-Xiang Ma. "Quantum ratchet effect in a time non-uniform double-kicked model". International Journal of Modern Physics B 31, n.º 16-19 (26 de julho de 2017): 1744063. http://dx.doi.org/10.1142/s0217979217440635.
Texto completo da fonteCui, Shawn X., Dawei Ding, Xizhi Han, Geoffrey Penington, Daniel Ranard, Brandon C. Rayhaun e Zhou Shangnan. "Kitaev's quantum double model as an error correcting code". Quantum 4 (24 de setembro de 2020): 331. http://dx.doi.org/10.22331/q-2020-09-24-331.
Texto completo da fonteVimala, Palanichamy, e N. R. Nithin Kumar. "Explicit Quantum Drain Current Model for Symmetric Double Gate MOSFETs". Journal of Nano Research 61 (fevereiro de 2020): 88–96. http://dx.doi.org/10.4028/www.scientific.net/jnanor.61.88.
Texto completo da fonteDuan, Zhongzheng, Wenxi Luo e Xiaohan Xu. "Transmission coefficient in double barrier quantum tunnelling effect". Theoretical and Natural Science 25, n.º 1 (20 de dezembro de 2023): 199–204. http://dx.doi.org/10.54254/2753-8818/25/20240965.
Texto completo da fonteChen, Zuo Peng, e Jin Ran Gao. "The Research of Qubit-Field System Quantum Entanglement under J-C Model". Applied Mechanics and Materials 203 (outubro de 2012): 464–68. http://dx.doi.org/10.4028/www.scientific.net/amm.203.464.
Texto completo da fonteEdwards, D. M., A. C. M. Green e K. Kubo. "Quantum spins in the double exchange model of manganites". Physica B: Condensed Matter 259-261 (janeiro de 1999): 810–11. http://dx.doi.org/10.1016/s0921-4526(98)00944-2.
Texto completo da fonteBeigi, Salman, Peter W. Shor e Daniel Whalen. "The Quantum Double Model with Boundary: Condensations and Symmetries". Communications in Mathematical Physics 306, n.º 3 (28 de junho de 2011): 663–94. http://dx.doi.org/10.1007/s00220-011-1294-x.
Texto completo da fontede Martino, Salvatore, Silvio de Siena e Pasquale Sodano. "Critical behavior of the quantum double-sine-Gordon model". Physical Review B 32, n.º 5 (1 de setembro de 1985): 3304–5. http://dx.doi.org/10.1103/physrevb.32.3304.
Texto completo da fonteTeses / dissertações sobre o assunto "Quantum double model"
Ritz-Zwilling, Anna. "Topological order at finite temperature in string-net and quantum double models". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.
Texto completo da fonteTopological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Kim, Ji S. "Electron transport through the double quantum dots in Aharonov-Bohm rings". Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1319544.
Texto completo da fonteDepartment of Physics and Astronomy
Fiedler, Leander Karl Wilhelm [Verfasser]. "Haag duality and Jones-Kosaki-Longo index in Kitaev's quantum double models for finite abelian groups / Leander Karl Wilhelm Fiedler". Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1136090622/34.
Texto completo da fonteBianco, Gianluca. "Study of the quantum interference between singly and doubly resonant top-quark production in proton-proton collisions at the LHC with the ATLAS detector". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22108/.
Texto completo da fonteMichaille, Laurent. "Étude des états vibrationnels très excités de la molécule CS2 : dynamique non linéaire et corrélations spectrales". Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10009.
Texto completo da fontePlatt, Edward. "WKB Analysis of Tunnel Coupling in a Simple Model of a Double Quantum Dot". Thesis, 2008. http://hdl.handle.net/10012/4145.
Texto completo da fonteKómár, Anna. "Quantum Computation and Information Storage in Quantum Double Models". Thesis, 2018. https://thesis.library.caltech.edu/10926/18/toriccode1.pdf.
Texto completo da fonteThe results of this thesis concern the real-world realization of quantum computers, specifically how to build their "hard drives" or quantum memories. These are many-body quantum systems, and their building blocks are qubits, the same way bits are the building blocks of classical computers.
Quantum memories need to be robust against thermal noise, noise that would otherwise destroy the encoded information, similar to how strong magnetic field corrupts data classically stored in magnetic many-body systems (e.g., in hard drives). In this work I focus on a subset of many-body models, called quantum doubles, which, in addition to storing the information, could be used to perform the steps of the quantum computation, i.e., work as a "quantum processor".
In the first part of my thesis, I investigate how long a subset of quantum doubles (qudit surface codes) can retain the quantum information stored in them, referred to as their memory time. I prove an upper bound for this memory time, restricting the maximum possible performance of qudit surface codes.
Then, I analyze the structure of quantum doubles, and find two interesting properties. First, that the high-level description of doubles, utilizing only their quasi-particles to describe their states, disregards key components of their microscopic properties. In short, quasi-particles (anyons) of quantum doubles are not in a one-to-one correspondence with the energy eigenstates of their Hamiltonian. Second, by investigating phase transitions of a simple quantum double, D(S3), I map its phase diagram, and interpret the physical processes the theory undergoes through terms borrowed from the Landau theory of phase transitions.
Kim, Seyoung 1981. "Electron transport in graphene transistors and heterostructures : towards graphene-based nanoelectronics". Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5420.
Texto completo da fontetext
Majumdar, Kausik. "Device Structure And Material Exploration For Nanoscale Transistor". Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2097.
Texto completo da fonteMajumdar, Kausik. "Device Structure And Material Exploration For Nanoscale Transistor". Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2097.
Texto completo da fonteLivros sobre o assunto "Quantum double model"
My Double Unveiled: The Dissipative Quantum Model of Brain (Advances in Consciousness Research). John Benjamins Publishing Co, 2001.
Encontre o texto completo da fonteDyall, Kenneth G., e Knut Faegri. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.001.0001.
Texto completo da fonteTanasa, Adrian. Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.001.0001.
Texto completo da fonteStuewer, Roger H. The Quantum-Mechanical Nucleus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198827870.003.0005.
Texto completo da fonteVigdor, Steven E. Trinity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814825.003.0003.
Texto completo da fonteLaunay, Jean-Pierre, e Michel Verdaguer. The moving electron: electrical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0003.
Texto completo da fonteMorawetz, Klaus. Transient Time Period. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0019.
Texto completo da fonteMathematical foundations of quantum field theory and perturbative string theory. Providence, R.I: American Mathematical Society, 2011.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Quantum double model"
Martín, Laura Ortiz. "Double Semion Model as a Quantum Memory". In Springer Theses, 49–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23649-6_4.
Texto completo da fontePrasad, G. Bhanu. "A Double Resonance Model for Lasers Without Inversion". In Recent Developments in Quantum Optics, 479–84. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2936-1_57.
Texto completo da fonteGhatak, Ajoy, e S. Lokanathan. "The Double Well Potential and the Krönig-Penney Model". In Quantum Mechanics: Theory and Applications, 401–22. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2130-5_16.
Texto completo da fonteNaaijkens, Pieter. "Kitaev’s Quantum Double Model from a Local Quantum Physics Point of View". In Advances in Algebraic Quantum Field Theory, 365–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21353-8_9.
Texto completo da fonteSacchetti, Andrea. "Double-Barrier Resonances and Time Decay of the Survival Probability: A Toy Model". In Advances in Quantum Mechanics, 283–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58904-6_17.
Texto completo da fonteXie, Zhaoqing, Qing Liu e Lanqing Xu. "A New Quantum-Behaved PSO: Based on Double δ-Potential Wells Model". In Proceedings of 2016 Chinese Intelligent Systems Conference, 211–19. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2338-5_21.
Texto completo da fonteIñarrea, Jesús, Gloria Platero e Allan H. MacDonald. "Microscopical Model for Hyperfine Interaction in Electronic Transport Through Double Quantum Dots: Spin Blockade Lifting". In Progress in Industrial Mathematics at ECMI 2006, 440–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71992-2_66.
Texto completo da fonteKawamura, T., H. A. Fertig e J. P. Leburton. "Quantum Transport through One- Dimensional Double-Quantum-Well Systems". In Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 509–20. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-39.
Texto completo da fonteFonseca, L. R. C., J. L. Jimenez e J. P. Leburton. "Electronic Coupling in InAs/GaAs Self-Assembled Stacked Double Quantum Dot Systems". In Physical Models for Quantum Dots, 589–605. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-36.
Texto completo da fonteZhang, L. X., D. V. Melnikov e J. P. Leburton. "Non-monotonic Variation of the Exchange Energy in Double Elliptic Quantum Dots". In Physical Models for Quantum Dots, 321–36. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Quantum double model"
Flågan, Sigurd, Patrick Maletinsky, Richard J. Warburton e Daniel Riedel. "Microcavity Platform for Widely Tunable Optical Double Resonance". In Quantum 2.0, QTh2C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2c.2.
Texto completo da fonteDeshler, Nico, Itay Ozer, Amit Ashok e Saikat Guha. "Experimental Demonstration of a Quantum-Optimal Direct Imaging Coronagraph". In Computational Optical Sensing and Imaging, CF1B.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cf1b.3.
Texto completo da fonteSabbagh, M. El, W. Fikry e O. A. Omar. "Quantum compact model for ballistic double gate MOSFETs". In Technology of Integrated Systems in Nanoscal Era (DTIS). IEEE, 2009. http://dx.doi.org/10.1109/dtis.2009.4938043.
Texto completo da fonteLin, Chung-hsun, Mohan Dunga, Ali Niknejad e Chenming Hu. "A Compact Quantum-Mechanical Model for Double-Gate MOSFET". In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306111.
Texto completo da fonteHeydari, Hoshang. "Entanglement dynamics of double Jaynes-Cummings interaction model based on geometric invariants". In QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS 6. AIP, 2012. http://dx.doi.org/10.1063/1.4773154.
Texto completo da fonteKostov, Ivan, Vladimir Kazakov e D. Kutasov. "Matrix model of the (1+1) dimensional dilatonic black hole in the double scaling limit". In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0026.
Texto completo da fonteGao, D. S., A. T. Yang, S. M. Kang, R. P. Bryan, M. E. Givens e J. J. Coleman. "A Quantum-Well Laser Model for Circuit Simulation". In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.sa5.
Texto completo da fonteCiprian, Dalibor, e Petr Hlubina. "Model of a double-sided surface plasmon resonance fiber-optic sensor". In XIX Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, editado por Agnieszka Popiolek-Masajada e Waclaw Urbanczyk. SPIE, 2014. http://dx.doi.org/10.1117/12.2176037.
Texto completo da fonteJingbo, Duan. "Big Data Classification Model and Algorithm Based on Double Quantum Particle Swarm Optimization". In 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT). IEEE, 2023. http://dx.doi.org/10.1109/iccect57938.2023.10140247.
Texto completo da fonteMedury, AdityaSankar, Kausik Majumdar, Navakanta Bhat e K. N. Bhat. "A compact model incorporating quantum effects for ultra-thin-body Double-Gate MOSFETs". In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424996.
Texto completo da fonte