Siga este link para ver outros tipos de publicações sobre o tema: Quantum chromodynamics.

Artigos de revistas sobre o tema "Quantum chromodynamics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Quantum chromodynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 512, n.º 11-12 (novembro de 2000): 925–26. http://dx.doi.org/10.1002/andp.200051211-1210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Llewellyn Smith, C. H. "Quantum chromodynamics". Contemporary Physics 29, n.º 4 (julho de 1988): 407–9. http://dx.doi.org/10.1080/00107518808213767.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 9, n.º 11-12 (novembro de 2000): 925–26. http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<925::aid-andp925>3.0.co;2-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cahill, RT. "On the Importance of Self-interaction in QCD". Australian Journal of Physics 44, n.º 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Texto completo da fonte
Resumo:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chanyal, B. C., P. S. Bisht, Tianjun Li e O. P. S. Negi. "Octonion Quantum Chromodynamics". International Journal of Theoretical Physics 51, n.º 11 (15 de junho de 2012): 3410–22. http://dx.doi.org/10.1007/s10773-012-1222-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ioffe, B. L. "Condensates in quantum chromodynamics". Physics of Atomic Nuclei 66, n.º 1 (janeiro de 2003): 30–43. http://dx.doi.org/10.1134/1.1540654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

BROWER, RICHARD C., YUE SHEN e CHUNG-I. TAN. "CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS". International Journal of Modern Physics C 06, n.º 05 (outubro de 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Texto completo da fonte
Resumo:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Close, Frank. "Confirmation for quantum chromodynamics". Nature 353, n.º 6344 (outubro de 1991): 498–99. http://dx.doi.org/10.1038/353498a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vranas, P., M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, R. Soltz e G. Bhanot. "Massively parallel quantum chromodynamics". IBM Journal of Research and Development 52, n.º 1.2 (janeiro de 2008): 189–97. http://dx.doi.org/10.1147/rd.521.0189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bakker, B. L. G., A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Głazek et al. "Light-front quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 251-252 (junho de 2014): 165–74. http://dx.doi.org/10.1016/j.nuclphysbps.2014.05.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

BUTTERWORTH, JON M. "QUANTUM CHROMODYNAMICS AT COLLIDERS". International Journal of Modern Physics A 21, n.º 08n09 (10 de abril de 2006): 1792–804. http://dx.doi.org/10.1142/s0217751x06032769.

Texto completo da fonte
Resumo:
QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

CORNWALL, JOHN M. "ENTROPY IN QUANTUM CHROMODYNAMICS". Modern Physics Letters A 27, n.º 09 (21 de março de 2012): 1230011. http://dx.doi.org/10.1142/s021773231230011x.

Texto completo da fonte
Resumo:
We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including [Formula: see text]. The second is effective vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a [Formula: see text] condensate.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Brower, Richard C. "Chirally extended quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 34 (abril de 1994): 210–12. http://dx.doi.org/10.1016/0920-5632(94)90347-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

SISSAKIAN, A. N., I. L. SOLOVTSOV e O. P. SOLOVTSOVA. "NONPERTURBATIVE β-FUNCTION IN QUANTUM CHROMODYNAMICS". Modern Physics Letters A 09, n.º 26 (30 de agosto de 1994): 2437–43. http://dx.doi.org/10.1142/s0217732394002318.

Texto completo da fonte
Resumo:
We propose a method by which it is possible to go beyond the scope of quantum chromodynamics perturbation theory. By using a new small parameter we formulate a systematic nonperturbative expansion and derive a renormalization β-function in quantum chromodynamics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Efimov, G. V. "Stability of Quantum Electrodynamics and Quantum Chromodynamics". Theoretical and Mathematical Physics 141, n.º 1 (outubro de 2004): 1398–414. http://dx.doi.org/10.1023/b:tamp.0000043856.41940.3c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions". Uspekhi Fizicheskih Nauk 164, n.º 8 (1994): 785. http://dx.doi.org/10.3367/ufnr.0164.199408a.0785.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kozlov, Mikhail G., Alexey V. Reznichenko e Victor S. Fadin. "Quantum chromodynamics at high energies". Siberian Journal of Physics 2, n.º 4 (2007): 3–31. http://dx.doi.org/10.54238/1818-7994-2007-2-4-3-31.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Kronfeld, A. S. "Quantum chromodynamics with advanced computing". Journal of Physics: Conference Series 125 (1 de julho de 2008): 012067. http://dx.doi.org/10.1088/1742-6596/125/1/012067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Horsley, Roger, e Wim Schoenmaker. "Transport Coefficients of Quantum Chromodynamics". Physical Review Letters 57, n.º 23 (8 de dezembro de 1986): 2894–96. http://dx.doi.org/10.1103/physrevlett.57.2894.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Dremin, Igor M. "Multiparticle production and quantum chromodynamics". Physics-Uspekhi 45, n.º 5 (31 de maio de 2002): 507–25. http://dx.doi.org/10.1070/pu2002v045n05abeh001088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Iwasaki, Yoichi, Kazuyuki Kanaya, Shogo Kaya, Sunao Sakai e Tomoteru Yoshié. "Quantum Chromodynamics with Many Flavors". Progress of Theoretical Physics Supplement 131 (1998): 415–26. http://dx.doi.org/10.1143/ptps.131.415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Meyer-Ortmanns, Hildegard. "Phase transitions in quantum chromodynamics". Reviews of Modern Physics 68, n.º 2 (1 de abril de 1996): 473–598. http://dx.doi.org/10.1103/revmodphys.68.473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mateos, David. "String theory and quantum chromodynamics". Classical and Quantum Gravity 24, n.º 21 (15 de outubro de 2007): S713—S739. http://dx.doi.org/10.1088/0264-9381/24/21/s01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Fritzsch, H. "The history of quantum chromodynamics". International Journal of Modern Physics A 34, n.º 01 (10 de janeiro de 2019): 1930001. http://dx.doi.org/10.1142/s0217751x19300011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Dremin, Igor M. "Multiparticle production and quantum chromodynamics". Uspekhi Fizicheskih Nauk 172, n.º 5 (2002): 551. http://dx.doi.org/10.3367/ufnr.0172.200205b.0551.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Gupta, Suraj N., e Stanley F. Radford. "Quark confinement in quantum chromodynamics". Physical Review D 32, n.º 3 (1 de agosto de 1985): 781–83. http://dx.doi.org/10.1103/physrevd.32.781.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Larsson, Tomas I. "Nonperturbative propagators in quantum chromodynamics". Physical Review D 32, n.º 4 (15 de agosto de 1985): 956–61. http://dx.doi.org/10.1103/physrevd.32.956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions". Physics-Uspekhi 37, n.º 8 (31 de agosto de 1994): 715–36. http://dx.doi.org/10.1070/pu1994v037n08abeh000037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Sisakyan, A. N. "Variational expansions in quantum chromodynamics". Physics of Particles and Nuclei 30, n.º 5 (setembro de 1999): 461. http://dx.doi.org/10.1134/1.953115.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bazavov, Alexei, e Johannes Heinrich Weber. "Color screening in quantum chromodynamics". Progress in Particle and Nuclear Physics 116 (janeiro de 2021): 103823. http://dx.doi.org/10.1016/j.ppnp.2020.103823.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Rapuano, F. "Quantum Chromodynamics on the lattice". Nuclear Physics A 623, n.º 1-2 (setembro de 1997): 81–89. http://dx.doi.org/10.1016/s0375-9474(97)00425-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Bowler, Kenneth C., e Anthony J. G. Hey. "Parallel computing and quantum chromodynamics". Parallel Computing 25, n.º 13-14 (dezembro de 1999): 2111–34. http://dx.doi.org/10.1016/s0167-8191(99)00081-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Belyaev, V. M., e B. Yu Blok. "Charmed baryons in quantum chromodynamics". Zeitschrift für Physik C Particles and Fields 30, n.º 1 (março de 1986): 151–56. http://dx.doi.org/10.1007/bf01560689.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Sridhar, K., Sunanda Banerjee, Swagato Banerjee, Rahul Basu, Fawzi Boudjema, Michel Fontannaz, Rajiv Gavai et al. "Quantum chromodynamics: Working group report". Pramana 51, n.º 1-2 (julho de 1998): 297–304. http://dx.doi.org/10.1007/bf02827499.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Andrianov, A. A., V. A. Andrianov, V. Yu Novozhilov e Yu V. Novozhilov. "Chiral bag in quantum chromodynamics". Theoretical and Mathematical Physics 74, n.º 1 (janeiro de 1988): 99–101. http://dx.doi.org/10.1007/bf01018217.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Dosch, H. G. "Nonperturbative methods in quantum chromodynamics". Progress in Particle and Nuclear Physics 33 (janeiro de 1994): 121–99. http://dx.doi.org/10.1016/0146-6410(94)90044-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Banerjee, Sunanda. "Quantum chromodynamics studies at LEP2". Pramana 55, n.º 1-2 (julho de 2000): 85–100. http://dx.doi.org/10.1007/s12043-000-0086-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Gupta, Sourendu, D. Indumathi, S. Banerjee, R. Basu, M. Dittmar, RV Gavai, F. Gelis et al. "Quantum chromodynamics: Working group report". Pramana 55, n.º 1-2 (julho de 2000): 327–33. http://dx.doi.org/10.1007/s12043-000-0112-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Del Duca, Vittorio. "Quantum chromodynamics at hadron colliders". Pramana 67, n.º 5 (novembro de 2006): 861–73. http://dx.doi.org/10.1007/s12043-006-0098-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ravindran, V., Pankaj Agrawal, Rahul Basu, Satyaki Bhattacharya, J. Blümlein, V. Del Duca, R. Harlander, D. Kosower, Prakash Mathews e Anurag Tripathi. "Working group report: Quantum chromodynamics". Pramana 67, n.º 5 (novembro de 2006): 983–92. http://dx.doi.org/10.1007/s12043-006-0107-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

SHIFMAN, M. "PERSISTENT CHALLENGES OF QUANTUM CHROMODYNAMICS". International Journal of Modern Physics A 21, n.º 28n29 (20 de novembro de 2006): 5695–719. http://dx.doi.org/10.1142/s0217751x06034914.

Texto completo da fonte
Resumo:
Unlike some models whose relevance to Nature is still a big question mark, Quantum Chromodynamics (QCD) will stay with us forever. QCD, born in 1973, is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark–gluon matter at high densities/temperatures (neutron stars); the vast horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, etc. Efforts aimed at solving the underlying theory, QCD, continue. In a remarkable entanglement, theoretical constructions of the 1970's and 1990's combine with today's ideas based on holographic description and strong–weak coupling duality, to provide new insights and a deeper understanding.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

NISHIJIMA, KAZUHIKO, e IZURU DEMIZU. "RENORMALIZATION CONSTANTS IN QUANTUM CHROMODYNAMICS". International Journal of Modern Physics A 13, n.º 09 (10 de abril de 1998): 1507–13. http://dx.doi.org/10.1142/s0217751x98000664.

Texto completo da fonte
Resumo:
The gauge dependence of the renormalization constant of the quark field has been studied with the help of the renormalization group method. In the case of the color gauge field an exact evaluation of the renormalization constant is feasible because of the presence of a sum rule, but in the absence of the corresponding sum rule, only a qualitative evaluation is possible for the quark field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Luo, Xiang-Qian, Qizhou Chen, Shouhong Guo, Xiyan Fang e Jinming Liu. "Glueball masses in quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 53, n.º 1-3 (fevereiro de 1997): 243–45. http://dx.doi.org/10.1016/s0920-5632(96)00626-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gavai, Rajiv V. "Lattice quantum chromodynamics: Some topics". Pramana 61, n.º 5 (novembro de 2003): 889–99. http://dx.doi.org/10.1007/bf02704457.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Forghan, B., e M. R. Tanhayi. "Krein regularization of quantum chromodynamics". Modern Physics Letters A 30, n.º 26 (13 de agosto de 2015): 1550126. http://dx.doi.org/10.1142/s0217732315501266.

Texto completo da fonte
Resumo:
In this paper, we use Krein regularization to study certain standard computations in quantum chromodynamics (QCD). In this method, the auxiliary modes[Formula: see text]— those with negative norms[Formula: see text]— are employed to calculate the quark self-energy, vacuum polarizations and vertex functions. We explicitly show that after making use of these modes and by taking into account the quantum metric fluctuation for the problems at hand, the conventional results can indeed be reproduced; but with the advantage of finite answers which require fewer mathematical procedures. An obvious merit of this approach is that the theory is naturally renormalized. The ultraviolet (UV) divergences disappear due to the presence of negative norm state, similar to the Pauli–Villars regularization method. We compare the answers of Krein regularization with the results of calculations which have been done in Hilbert space.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Dokshitzer, Yuri L. "Quantum chromodynamics and hadron dynamics". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, n.º 1779 (15 de fevereiro de 2001): 309–24. http://dx.doi.org/10.1098/rsta.2000.0728.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Forshaw, Jeffrey R., Douglas A. Ross e Carl R. Schmidt. "Quantum Chromodynamics and the Pomeron". Physics Today 51, n.º 10 (outubro de 1998): 86–88. http://dx.doi.org/10.1063/1.882397.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bethke, S. "Experimental verifications of quantum chromodynamics". Modern Physics Letters A 34, n.º 17 (7 de junho de 2019): 1950225. http://dx.doi.org/10.1142/s0217732319502250.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Huang, Tao, e Zheng Huang. "Quantum chromodynamics in background fields". Physical Review D 39, n.º 4 (15 de fevereiro de 1989): 1213–20. http://dx.doi.org/10.1103/physrevd.39.1213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Mathews, Prakash, Rahul Basu, D. Indumathi, E. Laenen, Swapan Majhi, Anuradha Misra, Asmita Mukherjee e W. Vogelsang. "Working group report: Quantum chromodynamics". Pramana 63, n.º 6 (dezembro de 2004): 1367–79. http://dx.doi.org/10.1007/bf02704902.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia