Literatura científica selecionada sobre o tema "Quantum chromodynamics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum chromodynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Quantum chromodynamics"

1

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 512, n.º 11-12 (novembro de 2000): 925–26. http://dx.doi.org/10.1002/andp.200051211-1210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Llewellyn Smith, C. H. "Quantum chromodynamics". Contemporary Physics 29, n.º 4 (julho de 1988): 407–9. http://dx.doi.org/10.1080/00107518808213767.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 9, n.º 11-12 (novembro de 2000): 925–26. http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<925::aid-andp925>3.0.co;2-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cahill, RT. "On the Importance of Self-interaction in QCD". Australian Journal of Physics 44, n.º 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Texto completo da fonte
Resumo:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chanyal, B. C., P. S. Bisht, Tianjun Li e O. P. S. Negi. "Octonion Quantum Chromodynamics". International Journal of Theoretical Physics 51, n.º 11 (15 de junho de 2012): 3410–22. http://dx.doi.org/10.1007/s10773-012-1222-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ioffe, B. L. "Condensates in quantum chromodynamics". Physics of Atomic Nuclei 66, n.º 1 (janeiro de 2003): 30–43. http://dx.doi.org/10.1134/1.1540654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

BROWER, RICHARD C., YUE SHEN e CHUNG-I. TAN. "CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS". International Journal of Modern Physics C 06, n.º 05 (outubro de 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Texto completo da fonte
Resumo:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Close, Frank. "Confirmation for quantum chromodynamics". Nature 353, n.º 6344 (outubro de 1991): 498–99. http://dx.doi.org/10.1038/353498a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vranas, P., M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, R. Soltz e G. Bhanot. "Massively parallel quantum chromodynamics". IBM Journal of Research and Development 52, n.º 1.2 (janeiro de 2008): 189–97. http://dx.doi.org/10.1147/rd.521.0189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bakker, B. L. G., A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Głazek et al. "Light-front quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 251-252 (junho de 2014): 165–74. http://dx.doi.org/10.1016/j.nuclphysbps.2014.05.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Quantum chromodynamics"

1

Soerensen, P. H. "Soft divergences in quantum chromodynamics". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Von, Oertzen Detlof Wilhelm. "Transport coefficients in quantum chromodynamics". Doctoral thesis, University of Cape Town, 1990. http://hdl.handle.net/11427/22057.

Texto completo da fonte
Resumo:
Relativistic kinetic theory provides a transport equation for classical, spinless, colored particles in a non-Abelian external field. We review the methods of solution used in the literature to find the transport coefficients for quark and gluon systems. Most authors use the relaxation time approximation of the Boltzmann equation to compute the transport coefficients, but this method has shortcomings in mixtures. We use the Chapman Enskog (CE) method to solve the classical transport equations for quarks and gluons for the transport coefficients. The differential crosssections describing the particle interaction are obtained from the lowest order scattering diagrams of quantum chromodynamics. We study a pure quark system, a pure gluon system and a quark antiquark (qq) mixture. For mixtures of quarks, antiquarks and gluons, we find the shear viscosity, heat conductivity and cross-coefficients. The coefficients pertaining to qq mixtures, namely the thermal diffusion, diffusion and Dufour coefficient, the viscosities and heat conductivity are obtained and the conductivity of a qq mixture in an external field is computed. We compare our transport coefficients to others in the literature by rewriting them in terms of characteristic relaxation times. Although our results are generally larger than others, they are of the same order of magnitude, with important implications for quark-gluon (QG) plasma signatures. The quark to gluon shear viscosity ratio is found to be ~5 times the number of quark flavors, emphasising the importance of quarks in dynamical QG calculations. The coefficients for a field-free qq mixture indicate no qq separation in the presence of a temperature gradient. In the CE method, the transport coefficients depend naturally on a logarithmic factor due to the divergent scattering cross-sections, reflecting the plasma shielding effects. This logarithm is evaluated by relating it to typical plasma parameters. We apply our results to the QG phase in the early universe and ultra-relativistic heavy ion collisions. A comparison of the QG to pion transport coefficients at the quark-hadron phase transition shows that the latter are ~10³ smaller. Dissipative effects increase the plasma lifetime, resulting in a longer high energy density and temperature plasma phase.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tsegaye, Takele Dessie. "Confinement Mechanisms in Quantum Chromodynamics". University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1051373650.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Detmold, William. "Nonperturbative approaches to quantum chromodynamics". Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phd4817.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Peláez, Arzúa Monica Marcela. "Infrared correlation functions in Quantum Chromodynamics". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066491/document.

Texto completo da fonte
Resumo:
Le but de cette thèse est l'étude des fonctions de corrélation des théries Yang-Mills dans le régime infrarouge. Il est connu que, à cause de l'invariance jauge, il est nécessaire de fixer la jauge pour calculer des valeurs moyennes analytiquement. La procedure de fixation gauge standard est la procedure de Faddeev-Popov (FP). Le Lagrangien de FP permet de faire des calculs perturbatifs pour la Chromodynamique Quantique dans le régime de hautes énergies dont les résultats sont comparés avec succès avec des expériences. Cependant, dans le régime de basses énergies, il se trouve que la constante de couplage, calculée avec la procedure antérieure, diverge. En conséquence, la théorie des perturbations standard n'est plus valide. D'autre part, les simulations du réseau trouvent que la constante de couplage est finie avec une valeur modérée même dans le régime infrarouge. Ceci suggère qu'il devrait exister une manière de faire des calculs perturbatifs également dans le régime infrarouge. Cette différence dans la constante de couplage peut être due au fait que la procedure de FP n'est pas bien justifiée dans ce régime. Nous proposons de modifier le Lagrangien de FP avec un terme massif pour les gluons. Cette modification est également justifiée par le fait que le réseau trouve un propagateur du gluon qui paraît massive aux basses énergies. Nous utilisons cette version massive pour calculer à une boucle les fonctions de corrélations à deux et trois points pour une configuration cinématique générale et en dimension quelconque dans la jauge de Landau. On trouve que les comparaisons de notre calcul à une boucle avec les résultat du réseau donnent, en géneral, un très bon accord
The aim of this thesis is to investigate the infrared behaviour of Yang-Mills correlation functions. It is known that the gauge invariance of the theory brings as a consequence the necessity of a gauge fixing procedure in order to compute expectation values analytically. The standard procedure for fixing the gauge is the Faddeev-Popov (FP) procedure which allows one to do perturbation theory in the ultraviolet regime. Perturbative calculations using the FP gauge fixed action successfully reproduce Quantum Chromodynamics observables measured by experiments in the ultraviolet regime. In the infrared regime the coupling constant of the theory computed with the above procedure diverges, and standard perturbation theory does not seem to be valid. However, lattice simulations show that the coupling constant takes finite and not very large value. This suggests that some kind of perturbative calculations should be valid even in the infrared regime. The theoretical justification for the FP procedure depends on the absence of Gribov copies and hence is not valid in the infrared regime (where such copies exist). To correct this we propose to add a mass term for the gluons in the gauge-fixed Lagrangian. The gluon mass term is also motivated by lattice simulations which observe that the gluon propagator behaves as it was massive in the infrared regime. We use this massive extension of the FP gauge fixed action to compute the one loop correction of the two- and three-point correlation functions in the Landau gauge for arbitrary kinematics and dimension. Our one-loop calculations are enough, in general, to reproduce with good accuracy the lattice data available in the literature
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bass, Steven David. "Spin dependent effects in quantum chromodynamics /". Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phb317.pdf.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 1993.
Copies of three of the author's previously published articles inserted as appendix B. Includes bibliographical references.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Malaza, E. D. "Jet multiplicity distributions in quantum chromodynamics". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382607.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dasgupta, M. "Power suppressed corrections in quantum chromodynamics". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598295.

Texto completo da fonte
Resumo:
The purpose of the research described in this dissertation, is to establish a bridge between perturbative and non-perturbative aspects of QCD. While it is remarkable that the factorisation theorems of QCD allow one the freedom to carry out perturbative calculations in most cases of interest, it cannot be forgotten that perturbation theory can never provide a complete description of strong interaction phenomena. The factorisation theorems themselves make allowance for non-perturbative effects by parametrising them through parton distributions and fragmentation functions, which has given rise to what has become known as QCD phenomenology. In this dissertation we adopt a phenomenological approach to the study of a certain class of non-perturbative effects which are manifested in terms that behave as an inverse power of the relevant hard scale. The idea underlying our approach is to examine the ambiguity of the perturbative series and then interpret it as representing non-perturbative effects. To make quantitative estimates we adopt an approach in which our predictions depend on supposedly universal parameters that can be extracted from experiment in the same spirit as parton distributions. These parameters are the moments of the strong coupling, which is assumed infrared finite. Within this approach we can relate the power corrections to different observables, due to the universality assumption. Knowledge of these parameters can be employed to constrain the form of the strong coupling at small scales which may allow a unique glimpse into the confinement domain. In this dissertation we make unambiguous predictions for power corrections to a wide variety of observables. These include DIS structure functions, fragmentation functions in both e+e- annihilation and DIS, and event shape variables. In most cases we observe that there is good support for the predictions made here, from experimental data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Daniel, David John. "Towards phenomenology from lattice quantum chromodynamics". Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/13558.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sheard, Stephen Noel. "Weak interactions in lattice quantum chromodynamics". Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/14402.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Quantum chromodynamics"

1

Greiner, Walter, e Andreas Schäfer. Quantum Chromodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Greiner, Walter, Stefan Schramm e Eckart Stein. Quantum Chromodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04707-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Greiner, Walter. Quantum chromodynamics. Berlin: Springer-Verlag, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Greiner, Walter. Quantum chromodynamics. New York: Springer-Verlag, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Andreas, Schäfer, ed. Quantum chromodynamics. 2a ed. Berlin: Springer-Verlag, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Stefan, Schramm, e Stein Eckart, eds. Quantum chromodynamics. 2a ed. Berlin: Springer, 2002.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Knechtli, Francesco, Michael Günther e Michael Peardon. Lattice Quantum Chromodynamics. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0999-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

H, Mueller A., ed. Perturbative quantum chromodynamics. Singapore: World Scientific, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dominguez, Cesareo A. Quantum Chromodynamics Sum Rules. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97722-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gattringer, Christof, e Christian B. Lang. Quantum Chromodynamics on the Lattice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01850-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Quantum chromodynamics"

1

Armesto, Néstor, e Carlos Pajares. "Quantum Chromodynamics". In Springer Proceedings in Physics, 48–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12238-0_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Can, Kadir Utku. "Quantum Chromodynamics". In Electromagnetic Form Factors of Charmed Baryons in Lattice QCD, 15–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8995-4_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Zhang, Jian-zu, Roberto Floreanini, Steven Duplij, Steven Duplij, Dmitri Gitman, Stuart Corney, Peter Jarvis, Robert Marnelius, Steven Duplij e Stephan Narison. "Quantum Chromodynamics". In Concise Encyclopedia of Supersymmetry, 314. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_421.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Böhm, Manfred, Ansgar Denner e Hans Joos. "Quantum Chromodynamics". In Gauge Theories of the Strong and Electroweak Interaction, 426–565. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80160-9_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shanahan, Phiala Elisabeth. "Quantum Chromodynamics". In Strangeness and Charge Symmetry Violation in Nucleon Structure, 5–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31438-9_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fritzsch, Harald. "Quantum Chromodynamics". In Murray Gell-Mann and the Physics of Quarks, 89–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92195-2_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Smilga, Andrei. "Quantum Chromodynamics". In Digestible Quantum Field Theory, 177–209. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59922-9_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mosel, Ulrich. "Quantum Chromodynamics". In Fields, Symmetries, and Quarks, 209–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03841-3_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Abbas, Syed Afsar. "Quantum Chromodynamics". In Group Theory in Particle, Nuclear, and Hadron Physics, 203–26. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2016] | ©2016: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371702-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Schäfer, Thomas. "Quantum Chromodynamics". In An Advanced Course in Computational Nuclear Physics, 5–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53336-0_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Quantum chromodynamics"

1

Fried, H. M., B. Müller e Y. Gabellini. "QUANTUM CHROMODYNAMICS". In Proceedings of the Fifth Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Astbury, A., B. A. Campbell, F. C. Khanna, J. L. Pinfold e M. Vetterli. "Quantum Chromodynamics". In Thirteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527767.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Fried, H. M., e B. Müller. "Quantum Chromodynamics". In Proceedings of the Workshop. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Knechtli, Francesco. "Lattice Quantum Chromodynamics". In Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.292.0020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

BUTTERWORTH, JON M. "QUANTUM CHROMODYNAMICS AT COLLIDERS". In Proceedings of the XXII International Symposium. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704023_0020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ferretti, G., S. G. Rajeev e Z. Yang. "Three dimensional quantum chromodynamics". In Proceedings of the XXVI International Conference on High Energy Physics. Vol. II. AIP, 1992. http://dx.doi.org/10.1063/1.43442.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Larin, S. A. "Quantum chromodynamics with massive gluons". In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938688.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Yoshida, M., A. Nakamura, M. Fukada, T. Nakamura e S. Hioki. "Quantum chromodynamics simulation on NWT". In the 1995 ACM/IEEE conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/224170.224403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Stuben, Hinnerk, e Yoshifumi Nakamura. "BQCD -- Berlin quantum chromodynamics program". In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

NARDULLI, G. "EFFECTIVE FIELDS IN DENSE QUANTUM CHROMODYNAMICS". In Proceedings of a Meeting Held in the Framework of the Activities of GISELDA, the Italian Working Group on Strong Interactions. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776532_0020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Quantum chromodynamics"

1

Brodsky, S. Testing Quantum Chromodynamics with Antiprotons. Office of Scientific and Technical Information (OSTI), outubro de 2004. http://dx.doi.org/10.2172/839984.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Campbell, J. M. Working Group Report: Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), outubro de 2013. http://dx.doi.org/10.2172/1345651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Brodsky, S. J. New directions in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), dezembro de 1999. http://dx.doi.org/10.2172/753241.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kronfeld, Andreas S., e /Fermilab. QCD: results from lattice quantum chromodynamics. Office of Scientific and Technical Information (OSTI), outubro de 2006. http://dx.doi.org/10.2172/897018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Quigg, C. Quantum chromodynamics near the confinement limit. Office of Scientific and Technical Information (OSTI), setembro de 1985. http://dx.doi.org/10.2172/6128799.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Vranas, P., e R. Soltz. The BlueGene/L Supercomputer and Quantum ChromoDynamics. Office of Scientific and Technical Information (OSTI), outubro de 2006. http://dx.doi.org/10.2172/902256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hansen, Maxwell. Multi-Hadron Observables from Lattice Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), janeiro de 2014. http://dx.doi.org/10.2172/1172552.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dharmaratna, Welathantri G. D. Massive Quark Polarization in Quantum Chromodynamics Subprocesses. Office of Scientific and Technical Information (OSTI), fevereiro de 1990. http://dx.doi.org/10.2172/1427763.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Psaker, Ales. Inclusive and Exclusive Compton Processes in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), dezembro de 2005. http://dx.doi.org/10.2172/892144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Brodsky, Stanley J. The Light-Cone Fock Expansion in Quantum Chromodynamics. Office of Scientific and Technical Information (OSTI), setembro de 2000. http://dx.doi.org/10.2172/765015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia