Literatura científica selecionada sobre o tema "Quantum chemistry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Quantum chemistry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Quantum chemistry"
Johnson, Jeffrey Allan. "The Case of the Missing German Quantum Chemists". Historical Studies in the Natural Sciences 43, n.º 4 (novembro de 2012): 391–452. http://dx.doi.org/10.1525/hsns.2013.43.4.391.
Texto completo da fonteW.J.O.-T. "Quantum Chemistry". Journal of Molecular Structure: THEOCHEM 279 (fevereiro de 1993): 321–22. http://dx.doi.org/10.1016/0166-1280(93)90081-l.
Texto completo da fonteJ.W. "Quantum chemistry". Journal of Molecular Structure: THEOCHEM 121 (março de 1985): 317. http://dx.doi.org/10.1016/0166-1280(85)80072-5.
Texto completo da fonteW, J. "Quantum chemistry". Journal of Molecular Structure: THEOCHEM 136, n.º 1-2 (março de 1986): 201. http://dx.doi.org/10.1016/0166-1280(86)87075-0.
Texto completo da fonteRempel, A. A., O. V. Ovchinnikov, I. A. Weinstein, S. V. Rempel, Yu V. Kuznetsova, A. V. Naumov, M. S. Smirnov, I. Yu Eremchev, A. S. Vokhmintsev e S. S. Savchenko. "Quantum dots: modern methods of synthesis and optical properties". Russian Chemical Reviews 93, n.º 4 (abril de 2024): RCR5114. http://dx.doi.org/10.59761/rcr5114.
Texto completo da fonteClark, Timothy, e Martin G. Hicks. "Models of necessity". Beilstein Journal of Organic Chemistry 16 (13 de julho de 2020): 1649–61. http://dx.doi.org/10.3762/bjoc.16.137.
Texto completo da fonteBarden, Christopher J., e Henry F. Schaefer. "Quantum chemistry in the 21st century (Special topic article)". Pure and Applied Chemistry 72, n.º 8 (1 de janeiro de 2000): 1405–23. http://dx.doi.org/10.1351/pac200072081405.
Texto completo da fonteMakushin, K. M., M. D. Sapova e A. K. Fedorov. "Quantum computing library for quantum chemistry applications". Journal of Physics: Conference Series 2701, n.º 1 (1 de fevereiro de 2024): 012032. http://dx.doi.org/10.1088/1742-6596/2701/1/012032.
Texto completo da fonteArrazola, Juan Miguel, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado e Nathan Killoran. "Universal quantum circuits for quantum chemistry". Quantum 6 (20 de junho de 2022): 742. http://dx.doi.org/10.22331/q-2022-06-20-742.
Texto completo da fonteHastings, Matthew B., Dave Wecker, Bela Bauer e Matthias Troyer. "Improving quantum algorithms for quantum chemistry". Quantum Information and Computation 15, n.º 1&2 (janeiro de 2015): 1–21. http://dx.doi.org/10.26421/qic15.1-2-1.
Texto completo da fonteTeses / dissertações sobre o assunto "Quantum chemistry"
Altunata, Serhan. "Generalized quantum defect methods in quantum chemistry". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36257.
Texto completo da fonteVita.
Includes bibliographical references (p. 247-254).
The reaction matrix of multichannel quantum defect theory, K, gives a complete picture of the electronic structure and the electron - nuclear dynamics for a molecule. The reaction matrix can be used to examine both bound states and free electron scattering properties of molecular systems, which are characterized by a Rydberg/scattering electron incident on an ionic-core. An ab initio computation of the reaction matrix for fixed molecular geometries is a substantive but important theoretical effort. In this thesis, a generalized quantum defect method is presented for determining the reaction matrix in a form which minimizes its energy dependence. This reaction matrix method is applied to the Rydberg electronic structure of Calcium monofluoride. The spectroscopic quantum defects for the ... states of CaF are computed using an effective one-electron calculation. Good agreement with the experimental values is obtained. The E-symmetry eigenquantum defects obtained from the CaF reaction matrix are found to have an energy dependence characteristic of a resonance. The analysis shows that the main features of the energy-dependent structure in the eigenphases are a consequence of a broad shape resonance in the 2E+ Rydberg series.
(cont.) This short-lived resonance is spread over the entire 2E+ Rydberg series and extends well into the ionization continuum. The effect of the shape resonance is manifested as a global "scarring" of the Rydberg spectrum, which is distinct from the more familiar local level-perturbations. This effect has been unnoticed in previous analyses. The quantum chemical foundation of the quantum defect method is established by a many-electron generalization of the reaction matrix calculation. Test results that validate the many-electron theory are presented for the quantum defects of the lsagnpo, E+ Rydberg series of the hydrogen molecule. It is possible that the reaction matrix calculations on CaF and H2 can pave the way for a novel type of quantum chemistry that aims to calculate the electronic structure over the entire bound-state region, as opposed to the current methods that focus on state by state calculations.
by Serhan Altunata.
Ph.D.
Njegic, Bosiljka. "Cooking up quantum chemistry". [Ames, Iowa : Iowa State University], 2008.
Encontre o texto completo da fonteRudberg, Elias. "Quantum Chemistry for Large Systems". Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4561.
Texto completo da fonteGilbert, A. T. B. "Density methods in quantum chemistry". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599402.
Texto completo da fonteStrange, Robin. "Electron correlation in quantum chemistry". Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289793.
Texto completo da fonteMurray, Christopher William. "Quantum chemistry for large molecules". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317841.
Texto completo da fonteRubensson, Emanuel H. "Matrix Algebra for Quantum Chemistry". Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.
Texto completo da fontePye, Cory C. "Applications of optimization to quantum chemistry". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23109.pdf.
Texto completo da fonteLing, Song. "Aspects of quantum dynamics in chemistry /". Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/11620.
Texto completo da fonteBast, Radovan. "Quantum chemistry beyond the charge density". Université Louis Pasteur (Strasbourg) (1971-2008), 2008. https://publication-theses.unistra.fr/public/theses_doctorat/2008/BAST_Radovan_2008.pdf.
Texto completo da fonteThis thesis focuses on the calculation and visualization of molecular properties within the 4-component relativistic framework. Response theory together with density functional theory (DFT) within the Kohn-Sham approach are the main tools. The implementation of closed-shell linear and quadratic response functions within time-dependent DFT in the 4-component relativistic framework is presented with extensions that include contributions from the spin density. This thesis contains the first 4-component relativistic Hartree-Fock study of parity-violating effects on nuclear magnetic resonance parameters. An analytical real-space approach to frequency-dependent second-order molecular properties within the 4-component relativistic framework is introduced together with tools for the visualization of higher-order molecular properties based on the finite perturbation approach
Livros sobre o assunto "Quantum chemistry"
Veszprémi, Tamás, e Miklós Fehér. Quantum Chemistry. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4189-9.
Texto completo da fonteA, Peterson Kirk, ed. Quantum chemistry. 3a ed. Amsterdam: Elsevier, 2005.
Encontre o texto completo da fonteLowe, John P. Quantum chemistry. 2a ed. Boston: Academic Press, 1993.
Encontre o texto completo da fonteN, Levine Ira. Quantum chemistry. 5a ed. Upper Saddle River, N.J: Prentice Hall, 2000.
Encontre o texto completo da fonteN, Levine Ira. Quantum chemistry. 3a ed. USA: Allyn & Bacon, 1991.
Encontre o texto completo da fonteLowe, John P. Quantum chemistry. 3a ed. Burlington, MA: Elsevier Academic Press, 2006.
Encontre o texto completo da fonteRoos, Björn O., Roland Lindh, Per Åke Malmqvist, Valera Veryazov e Per-Olof Widmark. Multiconfigurational Quantum Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119126171.
Texto completo da fonteSmith, Vedene H., Henry F. Schaefer e Keiji Morokuma, eds. Applied Quantum Chemistry. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4746-7.
Texto completo da fonteOnishi, Taku. Quantum Computational Chemistry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5933-9.
Texto completo da fontePrasad, Ram Yatan, e Pranita. Computational Quantum Chemistry. 2a ed. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003133605.
Texto completo da fonteCapítulos de livros sobre o assunto "Quantum chemistry"
Simões, Ana. "Quantum Chemistry". In Compendium of Quantum Physics, 518–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_158.
Texto completo da fonteTsuneda, Takao. "Quantum Chemistry". In Density Functional Theory in Quantum Chemistry, 1–33. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54825-6_1.
Texto completo da fonteBattaglia, Franco, e Thomas F. George. "Quantum Chemistry". In Fundamentals in Chemical Physics, 141–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1636-9_4.
Texto completo da fonteHandy, Nicholas C., e S. F. Boys. "Quantum chemistry". In 100 Years of Physical Chemistry, 57–66. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847550002-00057.
Texto completo da fontePène, Olivier, Karl Jansen, Norman H. Christ, Norman H. Christ e Salvador Coll. "Quantum Chemistry". In Encyclopedia of Parallel Computing, 1689. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2418.
Texto completo da fonteWilson, Stephen. "Quantum Chemistry". In Chemistry by Computer, 41–83. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2137-8_4.
Texto completo da fonteCasadesús, Ricard. "Quantum Chemistry". In Encyclopedia of Sciences and Religions, 1921–22. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1666.
Texto completo da fonteOnishi, Taku. "Helium Chemistry". In Quantum Computational Chemistry, 277–85. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_15.
Texto completo da fonteDua, Amita, e Chayannika Singh. "Basics of Computational Chemistry". In Quantum Chemistry, 565–91. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003490135-11.
Texto completo da fonteSautet, Philippe. "Quantum Chemistry Methods". In Characterization of Solid Materials and Heterogeneous Catalysts, 1119–45. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch24.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Quantum chemistry"
Maroulis, George. "Computational quantum chemistry". In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771781.
Texto completo da fonteEllinger, Yves. "The Quantum Chemistry alternative". In Second international conference on atomic and molecular data and their applications. AIP, 2000. http://dx.doi.org/10.1063/1.1336283.
Texto completo da fonteFedorov, Dmitry, Matthew Otten, Byeol Kang, Anouar Benali, Salman Habib, Stephen Gray e Yuri Alexeev. "Quantum Resource Estimation for Quantum Chemistry Algorithms". In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00144.
Texto completo da fonteSingh, Harshdeep. "Analytic Quantum Gradient Descent in Quantum Chemistry Simulations". In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw2a.4.
Texto completo da fonteFreedman, Danna. "Chemistry for quantum information science". In Quantum Sensing, Imaging, and Precision Metrology, editado por Selim M. Shahriar e Jacob Scheuer. SPIE, 2023. http://dx.doi.org/10.1117/12.2657322.
Texto completo da fonteYuan, Zhiyang, Lila V. H. Rodgers, Jared Rovny, Sorawis Sangtawesin, Srikanth Srinivasan, James Allred, Nathalie P. de Leon e Patryk Gumann. "Ultrahigh Vacuum Surface Chemistry For Nanoscale Sensors In Diamond". In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.11.
Texto completo da fonte"THE CROSS-PLATFORM QUANTUM CHEMISTRY SOFTWARE FOR COLLEGE CHEMISTRY EDUCATION". In 2nd International Conference on Computer Supported Education. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002793104380441.
Texto completo da fontePerera, Ajith, Theodore E. Simos e George Maroulis. "Predictive Quantum Chemistry: A Step Toward “Chemistry Without Test Tubes”". In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Theory and Computation: Old Problems and New Challenges. Lectures Presented at the International Conference on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOLUME 1. AIP, 2007. http://dx.doi.org/10.1063/1.2835948.
Texto completo da fonteMa, Jonathan H., Han Wang, David Prendergast, Andrew R. Neureuther e Patrick Naulleau. "Investigating EUV radiation chemistry with first principle quantum chemistry calculations". In International Conference on Extreme Ultraviolet Lithography 2019, editado por Kurt G. Ronse, Paolo A. Gargini, Patrick P. Naulleau e Toshiro Itani. SPIE, 2019. http://dx.doi.org/10.1117/12.2538558.
Texto completo da fonteYuen-Zhou, Joel. "Controlling chemistry with vibrational polaritons". In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.w4b.4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Quantum chemistry"
Aspuru-Guzik, Alan. Quantum Computing for Quantum Chemistry. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2010. http://dx.doi.org/10.21236/ada534093.
Texto completo da fonteAuthor, Not Given. Computational quantum chemistry website. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/7376091.
Texto completo da fonteTaube, Andrew Garvin. Steps toward fault-tolerant quantum chemistry. Office of Scientific and Technical Information (OSTI), maio de 2010. http://dx.doi.org/10.2172/992330.
Texto completo da fonteUmrigar, Cyrus J. Quantum Chemistry via Walks in Determinant Space. Office of Scientific and Technical Information (OSTI), janeiro de 2016. http://dx.doi.org/10.2172/1233718.
Texto completo da fonteC. F. Melius e M. D. Allendorf. Bond additivity corrections for quantum chemistry methods. Office of Scientific and Technical Information (OSTI), abril de 1999. http://dx.doi.org/10.2172/751014.
Texto completo da fonteSholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/1109080.
Texto completo da fonteHollingsworth, Jennifer. Advanced Quantum Emitters: Chemistry, Photophysics, Integration and Application. Office of Scientific and Technical Information (OSTI), maio de 2021. http://dx.doi.org/10.2172/1781363.
Texto completo da fonteHarrison, Robert J., David E. Bernholdt, Bruce E. Bursten, Wibe A. De Jong, David A. Dixon, Kenneth G. Dyall, Walter V. Ermler et al. Computational Chemistry for Nuclear Waste Characterization and Processing: Relativistic Quantum Chemistry of Actinides. Office of Scientific and Technical Information (OSTI), agosto de 2002. http://dx.doi.org/10.2172/15010139.
Texto completo da fonteJones, H. W., e C. A. Weatherford. Analytical Methods Using Slater-Type Orbitals in Quantum Chemistry. Fort Belvoir, VA: Defense Technical Information Center, março de 1992. http://dx.doi.org/10.21236/ada251044.
Texto completo da fonteMun, Eundeok. Yb-based heavy fermion compounds and field tuned quantum chemistry. Office of Scientific and Technical Information (OSTI), janeiro de 2010. http://dx.doi.org/10.2172/985312.
Texto completo da fonte