Siga este link para ver outros tipos de publicações sobre o tema: QED de cavité.

Artigos de revistas sobre o tema "QED de cavité"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "QED de cavité".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz e Arno Rauschenbeutel. "Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED". EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.

Texto completo da fonte
Resumo:
Cavity quantum electrodynamics (cavity QED) is conventionally described by the Jaynes- or Tavis-Cummings model, where quantum emitters couple to a single-mode cavity. The opposite scenario, in which an ensemble of emitters couples to a single spatial mode of a propagating light field, is described by waveguide QED, where emitters interact with a continuum of frequency modes. Here we present an experiment where an ensemble of cold atoms strongly couples to a fiber-ring resonator with variable length containing an optical nanofiber. By changing the length of the resonator we can tailor the density of frequency modes and thus explore the transition from cavity QED to waveguide QED. We analyse the response of the ensemble–cavity system after the sudden switch-on of resonant laser light and find that for progressively longer resonators, the Rabi oscillations typical of cavity QED disappear and the single-pass dynamics of waveguide QED appear. Our measurements shed light on the interplay between the single-pass collective response of the atoms to the propagating cavity field and the ensemble–cavity dynamics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhang Lei, 张蕾. "基于腔QED制备三粒子singlet态". Laser & Optoelectronics Progress 58, n.º 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

YE, LIU, e GUANG-CAN GUO. "ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED". International Journal of Quantum Information 03, n.º 02 (junho de 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.

Texto completo da fonte
Resumo:
A scheme of quantum concentration for unknown atomic entangled states via cavity QED is proposed. During the preparation and the joint measurement of quantum states, the cavity is only virtually excited; thus, the scheme is insensitive to the cavity field states and the cavity decay. In the meanwhile, our setup also provides a demonstration of a quantum repeater in cavity QED in principle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

YANG, ZHEN, WEN-HAI ZHANG e LIU YE. "SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED". International Journal of Quantum Information 06, n.º 02 (abril de 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.

Texto completo da fonte
Resumo:
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1 → 2 phase-covariant telecloning, which works without ancilla, based on Cavity-QED. Our scheme is insensitive to the cavity field states and cavity decay. During the telecloning process, the cavity is only virtually excited, thus it greatly prolongs the efficient decoherent time. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wang, Yahong, e Changshui Yu. "Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED". International Journal of Quantum Information 13, n.º 02 (março de 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.

Texto completo da fonte
Resumo:
In this paper, we propose three schemes for remotely state preparation (RSP) an arbitrary two-level one-atom state via cavity quantum electro dynamics (QED) with minimal resources consumption. In the first case, a Greenberger–Horne–Zeilinger (GHZ) state is used as quantum channel; in the second case, the sender needs to construct an quantum channel with both of the assistant of cavity QED and the knowledge about the state to be remotely prepared. In each scheme, only 1 cbit and 1 ebit are needed with the aid of cavity QED. In the third case, we combine the first two protocols and give a theoretical proposal for controlled RSP with only 2 cbits and 1 ebit resources consumption.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

XUE, ZHENG-YAUN, PING DONG, YOU-MIN YI e ZHUO-LIANG CAO. "QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT". International Journal of Quantum Information 04, n.º 05 (outubro de 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.

Texto completo da fonte
Resumo:
We investigate schemes to securely distribute and reconstruct single-qubit and two-qubit arbitrary quantum states between two parties via tripartite GHZ states in cavity QED without joint measurement. Our schemes offer a simple way of demonstrating quantum state sharing in cavity QED. We also consider the generalization of our schemes to distribute and reconstruct a quantum state among many parties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

LIU, CHUAN-LONG, YAN-WEI WANG e YI-ZHUANG ZHENG. "IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS". International Journal of Quantum Information 07, n.º 03 (abril de 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.

Texto completo da fonte
Resumo:
A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Said, Taoufik, Abdelhaq Chouikh, Karima Essammouni e Mohamed Bennai. "Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction". Quantum Information and Computation 16, n.º 5&6 (abril de 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.

Texto completo da fonte
Resumo:
We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chang, D. E., L. Jiang, A. V. Gorshkov e H. J. Kimble. "Cavity QED with atomic mirrors". New Journal of Physics 14, n.º 6 (1 de junho de 2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Imamoglu, Atac. "Cavity-QED Using Quantum Dots". Optics and Photonics News 13, n.º 8 (1 de agosto de 2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Le Thomas, N., U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes e U. Banin. "Cavity QED with Semiconductor Nanocrystals". Nano Letters 6, n.º 3 (março de 2006): 557–61. http://dx.doi.org/10.1021/nl060003v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Haroche, S. "Mesoscopic coherences in cavity QED". Il Nuovo Cimento B 110, n.º 5-6 (maio de 1995): 545–56. http://dx.doi.org/10.1007/bf02741464.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

González, Joanna, e Miguel Orszag. "Quantum Cloning and Cavity QED". Open Systems & Information Dynamics 11, n.º 04 (dezembro de 2004): 377–83. http://dx.doi.org/10.1007/s11080-004-6628-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Gerry, Christopher C. "Cavity QED analog of spin". Journal of Modern Optics 44, n.º 11-12 (novembro de 1997): 2159–71. http://dx.doi.org/10.1080/09500349708231876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Prants, S. V., e M. Yu Uleysky. "Quantum instability in cavity QED". Journal of Experimental and Theoretical Physics Letters 82, n.º 12 (dezembro de 2005): 748–52. http://dx.doi.org/10.1134/1.2175242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Lange, Wolfgang, e Jean-Michel Gerard. "Focus section on Cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 6, n.º 2 (1 de fevereiro de 2004): 117–18. http://dx.doi.org/10.1088/1464-4266/6/2/e03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Haroche, S. "Entanglement experiments in cavity QED". Fortschritte der Physik 51, n.º 45 (7 de maio de 2003): 388–95. http://dx.doi.org/10.1002/prop.200310052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

ZHANG, WEN–HAI, LIU YE e JIE-LIN DAI. "SCHEME TO IMPLEMENT GENERAL PHASE-COVARIANT QUANTUM CLONING". International Journal of Quantum Information 04, n.º 05 (outubro de 2006): 761–68. http://dx.doi.org/10.1142/s0219749906002262.

Texto completo da fonte
Resumo:
We propose an experimentally feasible scheme to implement the optimal general 1→2 phase-covariant quantum cloning machine based on cavity QED. In the scheme, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Li, Ming, Wei Chen e Junli Gao. "A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/340917.

Texto completo da fonte
Resumo:
For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED), the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

NOH, CHANGSUK, e DIMITRIS G. ANGELAKIS. "SIMULATING TOPOLOGICAL EFFECTS WITH PHOTONS IN COUPLED QED CAVITY ARRAYS". International Journal of Modern Physics B 28, n.º 02 (15 de dezembro de 2013): 1441003. http://dx.doi.org/10.1142/s0217979214410033.

Texto completo da fonte
Resumo:
We provide a pedagogical account of an early proposal realizing fractional quantum Hall effect (FQHE) using coupled quantum electrodynamics (QED) cavity arrays (CQCAs). We start with a brief introduction on the basics of quantum Hall effects and then review the early proposals in the simulation of spin-models and fractional quantum Hall (FQH) physics with photons in coupled atom-cavity arrays. We calculate the energy gap and the overlap between the ground state of the system and the corresponding Laughlin wavefunction to analyze the FQH physics arising in the system and discuss possibilities to reach the ground state using adiabatic methods used in Cavity QED.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Wineland, David, J. Ignacio Cirac e Richard Jozsa. "Editorial Note". Quantum Information and Computation 1, n.º 2 (agosto de 2001): 1–2. http://dx.doi.org/10.26421/qic1.2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

XIONG, WEI, TAO WU e LIU YE. "REALIZATION OF NONLOCAL QUANTUM GATE THROUGH ASSISTED-CAVITIES". International Journal of Quantum Information 10, n.º 02 (março de 2012): 1250011. http://dx.doi.org/10.1142/s0219749912500116.

Texto completo da fonte
Resumo:
We propose a scheme for implementing a three-qubit controlled-Not-Not (CNNOT) gate and a two-qubit SWAP gate between atoms and single-photon pulse through cavity QED. In the scheme, we can one-step realize multiple-qubit GHZ state and two-qubit Bell state by applying multiple-qubits CNNOT gate. We have also shown that our scheme would be robust against practical imperfections in current cavity QED experiment setup through simple numerical estimates. Finally, we provide the current parameters to show that our scheme is feasible.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Tarallo, Marco G. "Toward a quantum-enhanced strontium optical lattice clock at INRIM". EPJ Web of Conferences 230 (2020): 00011. http://dx.doi.org/10.1051/epjconf/202023000011.

Texto completo da fonte
Resumo:
The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

YANG, MING, YOU-MING YI e ZHUO-LIANG CAO. "SCHEME FOR PREPARATION OF W STATE VIA CAVITY QED". International Journal of Quantum Information 02, n.º 02 (junho de 2004): 231–35. http://dx.doi.org/10.1142/s021974990400016x.

Texto completo da fonte
Resumo:
In this paper, we presented a physical scheme to generate the multi-cavity maximally entangled W state via cavity QED. All the operations needed in this scheme are to modulate the interaction time only once.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Yuge, Tatsuro, Kenji Kamide, Makoto Yamaguchi e Tetsuo Ogawa. "Cavity-Loss Induced Plateau in Coupled Cavity QED Array". Journal of the Physical Society of Japan 83, n.º 12 (15 de dezembro de 2014): 123001. http://dx.doi.org/10.7566/jpsj.83.123001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ye, Liu, e Guang-Can Guo. "Transferring a cavity field entangled state in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 7, n.º 8 (11 de julho de 2005): 212–14. http://dx.doi.org/10.1088/1464-4266/7/8/002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Mabuchi, H., M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer e S. J. van Enk. "Quantum networks based on cavity QED". Quantum Information and Computation 1, Special (dezembro de 2001): 7–12. http://dx.doi.org/10.26421/qic1.s-3.

Texto completo da fonte
Resumo:
We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bastarrachea-Magnani, Miguel Angel, Baldemar López-del-Carpio, Jorge Chávez-Carlos, Sergio Lerma-Hernández e Jorge G. Hirsch. "Regularity and chaos in cavity QED". Physica Scripta 92, n.º 5 (19 de abril de 2017): 054003. http://dx.doi.org/10.1088/1402-4896/aa6640.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Rice, P. R., J. Gea-Banacloche, M. L. Terraciano, D. L. Freimund e L. A. Orozco. "Steady State Entanglement in Cavity QED". Optics Express 14, n.º 10 (2006): 4514. http://dx.doi.org/10.1364/oe.14.004514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Larson, J. "Wave packet methods in cavity QED". Journal of Physics: Conference Series 99 (1 de fevereiro de 2008): 012011. http://dx.doi.org/10.1088/1742-6596/99/1/012011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Bužek, V., G. Drobný, M. S. Kim, G. Adam e P. L. Knight. "Cavity QED with cold trapped ions". Physical Review A 56, n.º 3 (1 de setembro de 1997): 2352–60. http://dx.doi.org/10.1103/physreva.56.2352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Spehner, D., e M. Orszag. "Quantum jump dynamics in cavity QED". Journal of Mathematical Physics 43, n.º 7 (julho de 2002): 3511–37. http://dx.doi.org/10.1063/1.1476392.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hughes, Stephen, Marten Richter e Andreas Knorr. "Quantized pseudomodes for plasmonic cavity QED". Optics Letters 43, n.º 8 (11 de abril de 2018): 1834. http://dx.doi.org/10.1364/ol.43.001834.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Orszag, Miguel, Nellu Ciobanu, Raul Coto e Vitalie Eremeev. "Quantum correlations in cavity QED networks". Journal of Modern Optics 62, n.º 8 (18 de julho de 2014): 593–607. http://dx.doi.org/10.1080/09500340.2014.940020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ye, Tian-Yu. "Quantum Private Comparison via Cavity QED". Communications in Theoretical Physics 67, n.º 2 (fevereiro de 2017): 147. http://dx.doi.org/10.1088/0253-6102/67/2/147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Semião, F. L. "Single-mode two-channel cavity QED". Journal of Physics B: Atomic, Molecular and Optical Physics 41, n.º 8 (3 de abril de 2008): 081004. http://dx.doi.org/10.1088/0953-4075/41/8/081004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Aqil, Muhammad, Aarouj, Fauzia Bano e Farhan Saif. "Engineering noon states in cavity QED". Journal of Russian Laser Research 31, n.º 4 (julho de 2010): 343–49. http://dx.doi.org/10.1007/s10946-010-9154-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

van Enk, S. J., H. J. Kimble e H. Mabuchi. "Quantum Information Processing in Cavity-QED". Quantum Information Processing 3, n.º 1-5 (outubro de 2004): 75–90. http://dx.doi.org/10.1007/s11128-004-3104-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bruneau, L., e C. A. Pillet. "Thermal Relaxation of a QED Cavity". Journal of Statistical Physics 134, n.º 5-6 (9 de dezembro de 2008): 1071–95. http://dx.doi.org/10.1007/s10955-008-9656-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Esfandiarpour, Saeideh, Hassan Safari e Stefan Yoshi Buhmann. "Cavity-QED interactions of several atoms". Journal of Physics B: Atomic, Molecular and Optical Physics 52, n.º 8 (4 de abril de 2019): 085503. http://dx.doi.org/10.1088/1361-6455/aaf6d7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Eleuch, H., J. M. Courty, G. Messin, C. Fabre e E. Giacobino. "Cavity QED effects in semiconductor microcavities". Journal of Optics B: Quantum and Semiclassical Optics 1, n.º 1 (1 de janeiro de 1999): 1–7. http://dx.doi.org/10.1088/1464-4266/1/1/001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Doherty, A. C., A. S. Parkins, S. M. Tan e D. F. Walls. "Effects of motion in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 1, n.º 4 (1 de agosto de 1999): 475–82. http://dx.doi.org/10.1088/1464-4266/1/4/320.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Spehner, D., e M. Orszag. "Temperature-enhanced squeezing in cavity QED". Journal of Optics B: Quantum and Semiclassical Optics 4, n.º 5 (30 de agosto de 2002): 326–35. http://dx.doi.org/10.1088/1464-4266/4/5/315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Mielke, S. L., G. T. Foster e L. A. Orozco. "Nonclassical Intensity Correlations in Cavity QED". Physical Review Letters 80, n.º 18 (4 de maio de 1998): 3948–51. http://dx.doi.org/10.1103/physrevlett.80.3948.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Jabri, H., e H. Eleuch. "Bunching and Antibunching in Cavity QED". Communications in Theoretical Physics 56, n.º 1 (julho de 2011): 134–38. http://dx.doi.org/10.1088/0253-6102/56/1/23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Rfifi, Saad, e Fatimazahra Siyouri. "Effect of Cavity QED on Entanglement". Foundations of Physics 46, n.º 11 (23 de junho de 2016): 1461–70. http://dx.doi.org/10.1007/s10701-016-0024-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Ye, Tian-Yu. "Secure Quantum Dialogue via Cavity QED". International Journal of Theoretical Physics 54, n.º 3 (25 de julho de 2014): 772–79. http://dx.doi.org/10.1007/s10773-014-2268-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Vogel, W., e C. Di Fidio. "Cavity QED with a trapped ion". Fortschritte der Physik 51, n.º 23 (3 de março de 2003): 242–48. http://dx.doi.org/10.1002/prop.200310034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nayak, N., Biplab Ghosh e A. S. Majumdar. "Environment induced entanglement in cavity-QED". Indian Journal of Physics 84, n.º 8 (agosto de 2010): 1039–50. http://dx.doi.org/10.1007/s12648-010-0098-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Yin-Ju, Lu. "Quantum Secret Sharing via Cavity QED". International Journal of Theoretical Physics 59, n.º 10 (15 de setembro de 2020): 3324–28. http://dx.doi.org/10.1007/s10773-020-04591-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia