Artigos de revistas sobre o tema "Pyrotechnic devices"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pyrotechnic devices".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Rossi, Carole, e Ruiqi Shen. "Miniaturized Pyrotechnic Systems Meet the Performance Needs While Limiting the Environmental Impact". Micromachines 13, n.º 3 (26 de fevereiro de 2022): 376. http://dx.doi.org/10.3390/mi13030376.
Texto completo da fonteKim, Bae-Seong, e Juho Lee. "Development of Impact Test Device for Pyroshock Simulation Using Impact Analysis". Aerospace 9, n.º 8 (28 de julho de 2022): 407. http://dx.doi.org/10.3390/aerospace9080407.
Texto completo da fonteZhu, Yubo, Jili Rong, Qianqiang Song e Zhipei Wu. "Research on Reliability Evaluation Method of Aerospace Pyrotechnic Devices Based on Energy Measurement". Applied Sciences 10, n.º 22 (19 de novembro de 2020): 8200. http://dx.doi.org/10.3390/app10228200.
Texto completo da fonteHimelblau, Harry. "Pyrotechnic devices and their applications". Journal of the Acoustical Society of America 111, n.º 5 (2002): 2359. http://dx.doi.org/10.1121/1.4777943.
Texto completo da fonteGeibig, Alfred. "Pyrotechnic Devices from Coburg Castle". Royal Armouries Yearbook 6, n.º 1 (31 de dezembro de 2001): 88–97. http://dx.doi.org/10.1080/30650682.2001.12426707.
Texto completo da fonteWarchoł, Radosław, Marcin Nita e Rafał Bazela. "FACTORS AFFECTING THE OPERATING PARAMETERS OF PYROTECHNIC DELAY DEVICES". PROBLEMY TECHNIKI UZBROJENIA, n.º 4 (2 de março de 2017): 87–106. http://dx.doi.org/10.5604/01.3001.0010.0481.
Texto completo da fonteVolkov, M. V. "Modernization of the electromechanical equipment the trigger device: description of the design and testing". Spacecrafts & Technologies 5, n.º 3 (24 de setembro de 2021): 137–45. http://dx.doi.org/10.26732/j.st.2021.3.02.
Texto completo da fonteTóth, Nikolett Ágnes, e Lajos Móró. "Szurkolói rendbontások a stadionokban, különös tekintettel a pirotechnikai eszközök alkalmazására". Belügyi Szemle 73, n.º 1 (21 de janeiro de 2025): 127–42. https://doi.org/10.38146/bsz-ajia.2025.v73.i1.pp127-142.
Texto completo da fonteDong, Xiao Tong, e Yi Jiang. "Study on Mechanical Materials with Overview of Connection and Separation Devices". Advanced Materials Research 788 (setembro de 2013): 590–93. http://dx.doi.org/10.4028/www.scientific.net/amr.788.590.
Texto completo da fonteГерасимов, С. И., В. И. Ерофеев, А. В. Зубанков, В. А. Кикеев, Е. Г. Косяк, П. Г. Кузнецов e В. В. Писецкий. "Применение индукционных датчиков в исследованиях быстропротекающих процессов". Журнал технической физики 90, n.º 8 (2020): 1374. http://dx.doi.org/10.21883/jtf.2020.08.49550.365-19.
Texto completo da fonteROFF, M. W., L. K. GRIFFITHS, N. GOBEAU, P. D. JOHNSON, D. PICKERING, D. A. RIMMER, C. J. SAUNDERS e J. P. WHEELER. "Characteristics of Pesticide Pyrotechnic Smoke Devices". Annals of Occupational Hygiene 50, n.º 7 (19 de setembro de 2006): 717–29. http://dx.doi.org/10.1093/annhyg/mel064.
Texto completo da fonteKelly, PJ, e SF Tinston. "Pyrotechnic devices by unbalanced magnetron sputtering". Vacuum 45, n.º 5 (maio de 1994): 507–11. http://dx.doi.org/10.1016/0042-207x(94)90243-7.
Texto completo da fonteRadeanu, Cristian, Gabriel Vasilescu, Daniela Rus, Ladislau Radermacher e Claudius Popescu. "Evaluation of the safety quality of automotive pyrotechnic articles following their exposure to triaxial vibrations with predetermined thermal conditioning cycles". MATEC Web of Conferences 389 (2024): 00054. http://dx.doi.org/10.1051/matecconf/202438900054.
Texto completo da fonteNguyen Van Tinh, Dam Quang Sang, Hoang Khac Hoang e Nguyen Van Hieu. "The effect of several factors on energy characteristicsand burning of pyrotechnic compositions based on silic and trilead tetraoxide in some pyrotechnic devices". Journal of Military Science and Technology, IPE (14 de outubro de 2024): 184–88. http://dx.doi.org/10.54939/1859-1043.j.mst.ipe.2024.184-188.
Texto completo da fonteYang, Yifan, Sanchun Lin, Yanshou Luo, Yubing Yu e Heng Yang. "Design and Analysis of Buffer Device for Interstage Pyrotechnic Separation". Journal of Physics: Conference Series 2569, n.º 1 (1 de agosto de 2023): 012014. http://dx.doi.org/10.1088/1742-6596/2569/1/012014.
Texto completo da fonteBement, Laurence J., e Herbert A. Multhaup. "Determining Functional Reliability of Pyrotechnic Mechanical Devices". AIAA Journal 37, n.º 3 (março de 1999): 357–63. http://dx.doi.org/10.2514/2.737.
Texto completo da fonteBement, Laurence J., e Herbert A. Multhaup. "Determining functional reliability of pyrotechnic mechanical devices". AIAA Journal 37 (janeiro de 1999): 357–63. http://dx.doi.org/10.2514/3.14173.
Texto completo da fonteHu, Dike, Hua Wang, Zijie Huang e Wangqiang Xiao. "Research on impact reduction of flexible boundary particle damping honeycomb plate based on discrete element multi body dynamics coupling". Electronic Research Archive 31, n.º 10 (2023): 6303–26. http://dx.doi.org/10.3934/era.2023319.
Texto completo da fonteLeón, David, Isabel Amez, Miloš Radojević, Nebojša Manić, Dragoslava Stojiljković, Aleksandar Milivojević, Javier García-Torrent e Blanca Castells. "Emissions and Fire Risk Assessment of Nitrocellulose as a Sustainable Alternative in Pyrotechnic Compositions". Fire 7, n.º 8 (1 de agosto de 2024): 265. http://dx.doi.org/10.3390/fire7080265.
Texto completo da fonteRen, Mingfa, Fei Weng, Jing Sun, Zhifeng Zhang, Zhiguo Ma e Tong Li. "Numerical and Experimental Failure Analysis of Carbon Fiber-Reinforced Polymer-Based Pyrotechnic Separation Device". International Journal of Aerospace Engineering 2020 (7 de janeiro de 2020): 1–12. http://dx.doi.org/10.1155/2020/2180927.
Texto completo da fontePulpea, Gheorghe Bogdan. "Aspects Regarding The Development Of Pyrotechnic Obscurant Systems For Visible And Infrared Protection Of Military Vehicles". International conference KNOWLEDGE-BASED ORGANIZATION 21, n.º 3 (1 de junho de 2015): 731–36. http://dx.doi.org/10.1515/kbo-2015-0123.
Texto completo da fonteMa, Hongliang, Yuanyuan Xue e Guofu Yin. "Simulation Study on Output Characteristics of Pyrotechnic Devices in Deep Water Environment". Journal of Physics: Conference Series 2891, n.º 5 (1 de dezembro de 2024): 052028. https://doi.org/10.1088/1742-6596/2891/5/052028.
Texto completo da fonteGolovatenko, V. D. "Using the group analysis transfer operator in the method of similarity for studying the fuel combustion process in engines". Journal of «Almaz – Antey» Air and Space Defence Corporation, n.º 3 (24 de outubro de 2021): 90–97. http://dx.doi.org/10.38013/2542-0542-2021-3-90-97.
Texto completo da fonteWomack, James M. "Computing Risk of Pyrotechnic Devices Using Lot Acceptance Testing". Military Operations Research 26, n.º 3 (1 de setembro de 2021): 73–92. http://dx.doi.org/10.5711/1082598326373.
Texto completo da fonteGheorghiosu, Edward, Emilian Ghicioi, Attila Kovacs, Ciprian Jitea, Stefan Ilici e Cristian Cioara. "Monitoring the Behaviour of Fireworks to Vibrations and the Establishment of the Mechanical Conditioning Influence". Applied Mechanics and Materials 430 (setembro de 2013): 108–12. http://dx.doi.org/10.4028/www.scientific.net/amm.430.108.
Texto completo da fontePopa, Narcis, Anton Darsy, Dan Pintilie, Denisa Tudor, Carla Enache e Gabriel Vasilescu. "Computerized Assessment of Integrated Site Risk Specific to Industrial Infrastructures of Explosives, Taking Acts of Maliciousness Into Consideration". Mining Revue 29, n.º 2 (1 de junho de 2023): 53–59. http://dx.doi.org/10.2478/minrv-2023-0014.
Texto completo da fonteLichorobiec, Stanislav, e Lucia Figuli. "Shaped-Cumulative Charge as a Pyrotechnic Mean for a Pipe Bomb Deactivation". Key Engineering Materials 755 (setembro de 2017): 65–74. http://dx.doi.org/10.4028/www.scientific.net/kem.755.65.
Texto completo da fonteGonsales, A. A. V., K. A. Karnaukhov, T. S. Malishchuk e Yu V. Popov. "Design and Production Technology Features of the Domed Solid Fuel Gas Generators with Single-Stage Response of the Vehicle Passive Safety System". Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, n.º 1 (144) (março de 2023): 67–79. http://dx.doi.org/10.18698/0236-3941-2023-1-67-79.
Texto completo da fonteGaraliu-Bușoi, Bogdan, Ștefan Ilici, Aurelian Nicola, Claudius Popescu e Dan Pintilie. "Evaluation of the effects produced by triggering pyrotechnic articles for automotive use by exposure to various hazardous external stimuli". MATEC Web of Conferences 389 (2024): 00021. http://dx.doi.org/10.1051/matecconf/202438900021.
Texto completo da fonteChoi, Mijin, Jung-Ryul Lee e Cheol-Won Kong. "Development of a Numerical Model for an Expanding Tube with Linear Explosive Using AUTODYN". Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/436156.
Texto completo da fonteCheong, Hae-Won, Sung-Ho Kang, Kiyoul Kim, Jang-Hyeon Cho, Byungtae Ryu e Seung-Su Baek. "Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries". Journal of the Korean Society of Propulsion Engineers 23, n.º 1 (1 de fevereiro de 2019): 116–23. http://dx.doi.org/10.6108/kspe.2019.23.1.116.
Texto completo da fonteLee, Junwoo, Kyoungwon Choi, Seung Un Ryu, Gil Hwan Ahn, Jong Gyu Paik, Byungtae Ryu e Yong Sun Won. "Aging Mechanism of Zirconium Potassium Perchlorate Charge in Pyrotechnic Mechanical Devices". Nanoscience and Nanotechnology Letters 10, n.º 5 (1 de maio de 2018): 735–40. http://dx.doi.org/10.1166/nnl.2018.2660.
Texto completo da fonteKelly, P. J., S. F. Tinston e R. D. Arnell. "The deposition and analysis of pyrotechnic devices deposited by magnetron sputtering". Surface and Coatings Technology 60, n.º 1-3 (outubro de 1993): 597–602. http://dx.doi.org/10.1016/0257-8972(93)90160-p.
Texto completo da fonteOstrik, Afanasy, Dmitry Nikolaev, Vladimir Bakulin e Irina Bugay. "Explosive technologies for testing composite constructions of aircraft for strength to heat-power non-stationary loading". MATEC Web of Conferences 362 (2022): 01019. http://dx.doi.org/10.1051/matecconf/202236201019.
Texto completo da fonteBoliubash, Yevhen. "Experimental Determination of the Focal Distance of Cumulative Pyrotechnic Device in Launch Vehicle Separation System". Tehnički glasnik 19, n.º 1 (7 de fevereiro de 2025): 142–49. https://doi.org/10.31803/tg-20240516182956.
Texto completo da fonteKoziar, Nazarii, Oksana Kyrychenko, Andrii Khyzhniak e Oleksandr Diadiushenko. "Thermodynamic Calculations of the Main Characteristics of the Combustion Process of Pyrotechnic Nitrate-Metallized Mixtures with Additives of Organic and Inorganic Substances under External Thermal Influences". Defect and Diffusion Forum 437 (7 de outubro de 2024): 49–59. http://dx.doi.org/10.4028/p-c8ct0o.
Texto completo da fonteHazel, Terence, Jacques Lavaud e Bruno Leforgeais. "Using Pyrotechnic Current-Limiting Devices: A Case Study of What Went Right". IEEE Industry Applications Magazine 23, n.º 5 (setembro de 2017): 50–59. http://dx.doi.org/10.1109/mias.2016.2600726.
Texto completo da fonteKim, Dong-seong, e Seung-gyo Jang. "Reliability Verification of Pyrotechnic Devices for Launch Vehicles Based on Bayesian Method". Journal of the Korean Society of Propulsion Engineers 27, n.º 3 (30 de junho de 2023): 33–39. http://dx.doi.org/10.6108/kspe.2023.27.3.033.
Texto completo da fonteLi, Chaozhen, Nan Yan, Yaokun Ye, Zhixing Lv, Xiang He, Jinhong Huang e Nan Zhang. "Thermal Analysis and Stability of Boron/Potassium Nitrate Pyrotechnic Composition at 180 °C". Applied Sciences 9, n.º 17 (3 de setembro de 2019): 3630. http://dx.doi.org/10.3390/app9173630.
Texto completo da fonteEstevanes, Jared, Patrick Buzzini e Geraldine Monjardez. "Forensic Analysis of Recrystallized Inorganic Oxidizing Salts Used in Pyrotechnic-Based Improvised Explosive Devices Using Light Microscopy and Micro-Raman Spectroscopy". Microscope 71, n.º 1 (2024): 3–13. http://dx.doi.org/10.59082/indj3392.
Texto completo da fontePiersol, Allan. "Guidelines for Dynamic Data Acquisition and Analysis". Journal of the IEST 35, n.º 5 (1 de setembro de 1992): 21–26. http://dx.doi.org/10.17764/jiet.2.35.5.y67p77t461064052.
Texto completo da fonteMatyjasek, Łukasz, Wiktor Dmitruk e Łukasz Cichosz. "Examination of post-reaction residues of pyrotechnic material – p. 1: Smoke generators". Issues of Forensic Science 308 (2020): 50–64. http://dx.doi.org/10.34836/pk.2020.308.3.
Texto completo da fonteLee, So-Jeong, Dae-Hyun Hwang e Jae-Hung Han. "Development of Pyroshock Simulator for Shock Propagation Test". Shock and Vibration 2018 (13 de setembro de 2018): 1–13. http://dx.doi.org/10.1155/2018/9753793.
Texto completo da fonteWu, Weixiong. "Determination of sound power levels of some pyrotechnic devices using sound pressure measurements". Journal of the Acoustical Society of America 115, n.º 5 (maio de 2004): 2414. http://dx.doi.org/10.1121/1.4781178.
Texto completo da fontePopescu, Gheorghe, e Stefan Ghimişi. "Identification of Tight Spots to an Automatic Mechanical Assembly Line, by Simulation WINQSB". Advanced Materials Research 463-464 (fevereiro de 2012): 1625–29. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.1625.
Texto completo da fonteGherlone, M., D. Lomario, M. Mattone e R. Ruotolo. "Application of Wave Propagation to Pyroshock Analysis". Shock and Vibration 11, n.º 3-4 (2004): 145–56. http://dx.doi.org/10.1155/2004/278676.
Texto completo da fonteSushkin, Nikolai Vladimirovich. "On the question of the criminal legal concept of an explosive device". Юридические исследования, n.º 4 (abril de 2023): 35–44. http://dx.doi.org/10.25136/2409-7136.2023.4.38445.
Texto completo da fonteBolyubash, Ye S. "Experimental studies of the performance of pyrotechnic devices installed on the launch vehicle separation systems". Kosmičeskaâ tehnika. Raketnoe vooruženie 2024, n.º 1 (5 de novembro de 2024): 121–28. http://dx.doi.org/10.33136/stma2024.01.121.
Texto completo da fonteXian, Mingchun, Kang Zhao, Xuwen Liu, Yangang Meng, Junyao Xie, Jingwei Li, Lele Tong, Meng Huang e Lizhi Wu. "Theoretical Analysis and Numerical Simulation of the Motion of RDX Deflagration-Driven Flyer Plate Based on Laser-Initiated Micro-Pyrotechnic Devices". Micromachines 14, n.º 5 (24 de abril de 2023): 917. http://dx.doi.org/10.3390/mi14050917.
Texto completo da fonteMiszczak, Maciej. "AN OVERVIEW OF OPTICAL AND THERMOELECTRICAL SYSTEMS DETECTING MOVEMENT OF COMBUSTION ZONES IN SOLID EXPLOSIVES". PROBLEMY TECHNIKI UZBROJENIA, n.º 1 (31 de maio de 2017): 117–26. http://dx.doi.org/10.5604/01.3001.0010.0288.
Texto completo da fonte