Artigos de revistas sobre o tema "Pyridine phosphonate"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pyridine phosphonate".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kolodiazhna, O. O., E. V. Gryshkun, A. O. Kolodiazhna, S. Yu Sheiko e O. I. Kolodiazhnyi. "Catalytic phosphonylation of C=X electrophiles". Reports of the National Academy of Sciences of Ukraine, n.º 12 (dezembro de 2020): 75–84. http://dx.doi.org/10.15407/dopovidi2020.12.075.
Texto completo da fonteFang, Hua, Mei-Juan Fang, Xiao-Xia Liu, Jing-Jing Lin e Yu-Fen Zhao. "Dimethyl [phenyl(pyridine-4-carboxamido)methyl]phosphonate". Acta Crystallographica Section E Structure Reports Online 61, n.º 2 (22 de janeiro de 2005): o408—o409. http://dx.doi.org/10.1107/s1600536805001492.
Texto completo da fonteZare, Davood, Alessandro Prescimone, Edwin C. Constable e Catherine E. Housecroft. "Where Are the tpy Embraces in [Zn{4′-(EtO)2OPC6H4tpy}2][CF3SO3]2?" Crystals 8, n.º 12 (10 de dezembro de 2018): 461. http://dx.doi.org/10.3390/cryst8120461.
Texto completo da fonteBakhmutov, Vladimir I., Douglas W. Elliott, Gregory P. Wylie, Abraham Clearfield, Aida Contreras-Ramirez e Hong-Cai Zhou. "Pyridine-d5 as a 2H NMR probe for investigation of macrostructure and pore shapes in a layered Sn(iv) phosphonate–phosphate material". Chemical Communications 56, n.º 25 (2020): 3653–56. http://dx.doi.org/10.1039/c9cc09254d.
Texto completo da fonteFard, Z. H., Y. Kalinovskyy, D. M. Spasyuk, B. A. Blight e G. K. H. Shimizu. "Alkaline-earth phosphonate MOFs with reversible hydration-dependent fluorescence". Chemical Communications 52, n.º 87 (2016): 12865–68. http://dx.doi.org/10.1039/c6cc06490f.
Texto completo da fonteZangana, Karzan H., Eufemio Moreno Pineda e Richard E. P. Winpenny. "Tetrametallic lanthanide(iii) phosphonate cages: synthetic, structural and magnetic studies". Dalton Trans. 43, n.º 45 (2014): 17101–7. http://dx.doi.org/10.1039/c4dt02630f.
Texto completo da fonteLipinski, Radoslaw, Longin Chruscinski, Piotr Mlynarz, Bogdan Boduszek e Henryk Kozlowski. "Coordination abilities of amino-phosphonate derivatives of pyridine". Inorganica Chimica Acta 322, n.º 1-2 (outubro de 2001): 157–61. http://dx.doi.org/10.1016/s0020-1693(01)00580-1.
Texto completo da fonteFrantz, Richard, Michel Granier, Jean-Olivier Durand e Gérard F. Lanneau. "Phosphonate derivatives of pyridine grafted onto oxide nanoparticles". Tetrahedron Letters 43, n.º 50 (dezembro de 2002): 9115–17. http://dx.doi.org/10.1016/s0040-4039(02)02240-2.
Texto completo da fonteHolý, Antonín, e Ivan Rosenberg. "Synthesis of isomeric and enantiomeric O-phosphonylmethyl derivatives of 9-(2,3-dihydroxypropyl)adenine". Collection of Czechoslovak Chemical Communications 52, n.º 11 (1987): 2775–91. http://dx.doi.org/10.1135/cccc19872775.
Texto completo da fonteWang, Cheng Jun, Shan Shan Gong e Qi Sun. "An H-Phosphonate Approach for the Preparation of Purine-Nucleoside Monophosphates". Advanced Materials Research 1023 (agosto de 2014): 51–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1023.51.
Texto completo da fonteSekine, Yoshihiro, Taiga Yokoyama, Norihisa Hoshino, Manabu Ishizaki, Katsuhiko Kanaizuka, Tomoyuki Akutagawa, Masa-aki Haga e Hitoshi Miyasaka. "Stepwise fabrication of donor/acceptor thin films with a charge-transfer molecular wire motif". Chemical Communications 52, n.º 97 (2016): 13983–86. http://dx.doi.org/10.1039/c6cc08310b.
Texto completo da fonteZhang, Hui, Weiguo Cao, Qi Huang, Dong He, Jing Han, Jie Chen, Weimin He, Hongmei Deng e Min Shao. "[3+2] Cycloaddition of N-Aminopyridines and Perfluoroalkynylphosphonates: Facile Synthesis of Perfluoroalkylated Pyrazolo[1,5-a]pyridines Containing a Phosphonate Moiety". Synthesis 50, n.º 18 (23 de julho de 2018): 3731–37. http://dx.doi.org/10.1055/s-0037-1610443.
Texto completo da fonteFrantz, Richard, Jean-Olivier Durand e Michel Granier. "Syntheses and properties of phosphonate π-conjugated of pyridine". Comptes Rendus Chimie 8, n.º 5 (maio de 2005): 911–15. http://dx.doi.org/10.1016/j.crci.2004.10.016.
Texto completo da fonteWilk, Magdalena, Jan Janczak e Veneta Videnova-Adrabinska. "The supramolecular architecture of tris(naphthalene-1,5-diaminium) bis(5-aminonaphthalen-1-aminium) octakis[hydrogen (5-carboxypyridin-3-yl)phosphonate]". Acta Crystallographica Section C Crystal Structure Communications 68, n.º 9 (4 de agosto de 2012): o351—o354. http://dx.doi.org/10.1107/s0108270112033781.
Texto completo da fonteLiu, Qian, e Richard F. Jordan. "Copolymerization of Ethylene and Vinyl Fluoride by Self-Assembled Multinuclear Palladium Catalysts". Polymers 12, n.º 7 (19 de julho de 2020): 1609. http://dx.doi.org/10.3390/polym12071609.
Texto completo da fonteSun, Jian, Shan Shan Gong e Qi Sun. "Efficient Synthesis of Pyrimidine-Nucleoside Monophosphates from H-Phosphonates". Advanced Materials Research 1023 (agosto de 2014): 87–90. http://dx.doi.org/10.4028/www.scientific.net/amr.1023.87.
Texto completo da fonteChyba, Jan, Marek Necas e Jiri Pinkas. "Diethyl [4-(2,2′:6′,2′′-terpyridine-4′-yl)phenyl]phosphonate". Acta Crystallographica Section E Structure Reports Online 69, n.º 12 (27 de novembro de 2013): o1824. http://dx.doi.org/10.1107/s1600536813031541.
Texto completo da fonteBergkamp, Jesse J., Benjamin D. Sherman, Ernesto Mariño-Ochoa, Rodrigo E. Palacios, Gonzalo Cosa, Thomas A. Moore, Devens Gust e Ana L. Moore. "Synthesis and characterization of silicon phthalocyanines bearing axial phenoxyl groups for attachment to semiconducting metal oxides". Journal of Porphyrins and Phthalocyanines 15, n.º 09n10 (setembro de 2011): 943–50. http://dx.doi.org/10.1142/s1088424611003847.
Texto completo da fonteAiroldi, Annalisa, Piergiorgio Bettoni, Monica Donnola, Gianluca Calestani e Corrado Rizzoli. "Crystal structure of zwitterionic 3-(2-hydroxy-2-phosphonato-2-phosphonoethyl)imidazo[1,2-a]pyridin-1-ium monohydrate (minodronic acid monohydrate): a redetermination". Acta Crystallographica Section E Crystallographic Communications 71, n.º 1 (1 de janeiro de 2015): 51–54. http://dx.doi.org/10.1107/s2056989014026863.
Texto completo da fonteWilk, Magdalena, Jan Janczak e Veneta Videnova-Adrabinska. "Poly[aqua[μ3-(pyridin-1-ium-3,5-diyl)diphosphonato-κ3O:O′:O′′][μ2-(pyridin-1-ium-3,5-diyl)diphosphonato-κ2O:O′]calcium(II)]". Acta Crystallographica Section C Crystal Structure Communications 68, n.º 2 (25 de janeiro de 2012): m41—m44. http://dx.doi.org/10.1107/s0108270112001461.
Texto completo da fonteKaur Bhatia, Richa. "Anti-Protozoal Potential of Heterocyclic Compounds Against Giardiasis". Current Bioactive Compounds 15, n.º 3 (7 de maio de 2019): 280–88. http://dx.doi.org/10.2174/1573407214666180201154009.
Texto completo da fonteTiwari, Shailee V., Aniket P. Sarkate, Deepak K. Lokwani, Dattatraya N. Pansare, Surendra G. Gattani, Sameer S. Sheaikh, Shirish P. Jain e Shashikant V. Bhandari. "Explorations of novel pyridine-pyrimidine hybrid phosphonate derivatives as aurora kinase inhibitors". Bioorganic & Medicinal Chemistry Letters 67 (julho de 2022): 128747. http://dx.doi.org/10.1016/j.bmcl.2022.128747.
Texto completo da fonteGielen, Marcel, Hassan Dalil, Laurent Ghys, Bogdan Boduszek, Edward R. T. Tiekink, José C. Martins, Monique Biesemans e Rudolph Willem. "Synthesis and Structure of Di-n-Butyltin Pyridine-2-phosphonate-6-carboxylate". Organometallics 17, n.º 19 (setembro de 1998): 4259–62. http://dx.doi.org/10.1021/om9803725.
Texto completo da fonteVan hemel, Johan, Eddy L. Esmans, Pieter E. Joos, Alex De Groot, Roger A. Dommisse, Jan M. Balzarini e Erik D. De Clercq. "Synthesis and Biological Evaluation of Phosphonate Derivatives of Some Acyclic Pyridine-C-Nucleosides". Nucleosides and Nucleotides 17, n.º 12 (dezembro de 1998): 2429–43. http://dx.doi.org/10.1080/07328319808004329.
Texto completo da fonteHartwich, Anna, Nee Zdzienicka, Dominique Schols, Graciela Andrei, Robert Snoeck e Iwona E. Głowacka. "Design, synthesis and antiviral evaluation of novel acyclic phosphonate nucleotide analogs with triazolo[4,5-b]pyridine, imidazo[4,5-b]pyridine and imidazo[4,5-b]pyridin-2(3H)-one systems". Nucleosides, Nucleotides & Nucleic Acids 39, n.º 4 (25 de setembro de 2019): 542–91. http://dx.doi.org/10.1080/15257770.2019.1669046.
Texto completo da fonteVan hemel, Johan, Eddy L. Esmans, Pieter E. Joos, Alex De Groot, Roger A. Dommisse, Jan M. Balzarini e Erik D. De Clercq. "ChemInform Abstract: Synthesis and Biological Evaluation of Phosphonate Derivatives of Some Acyclic Pyridine-C-nucleosides." ChemInform 30, n.º 16 (16 de junho de 2010): no. http://dx.doi.org/10.1002/chin.199916236.
Texto completo da fonteGałęzowska, Joanna, Rafał Janicki, Henryk Kozłowski, Anna Mondry, Piotr Młynarz e Łukasz Szyrwiel. "Unusual Coordination Behaviour of a Phosphonate- and Pyridine-Containing Ligand in a Stable Lanthanide Complex". European Journal of Inorganic Chemistry 2010, n.º 11 (13 de março de 2010): 1696–702. http://dx.doi.org/10.1002/ejic.201000058.
Texto completo da fonteFu, Ruibiao, Shengmin Hu e Xintao Wu. "Syntheses, structures, thermal stabilities and luminescence of two new lead sulfonates with phosphonate, carboxylate and pyridine". Journal of Solid State Chemistry 213 (maio de 2014): 17–21. http://dx.doi.org/10.1016/j.jssc.2014.01.028.
Texto completo da fonteBalogh, Edina, Marta Mato-Iglesias, Carlos Platas-Iglesias, Éva Tóth, Kristina Djanashvili, Joop A. Peters, Andrés de Blas e Teresa Rodríguez-Blas. "Pyridine- and Phosphonate-Containing Ligands for Stable Ln Complexation. Extremely Fast Water Exchange on the GdIIIChelates". Inorganic Chemistry 45, n.º 21 (outubro de 2006): 8719–28. http://dx.doi.org/10.1021/ic0604157.
Texto completo da fonteKovács, Attila, e Zoltán Varga. "Metal–ligand interactions in complexes of cyclen-based ligands with Bi and Ac". Structural Chemistry 32, n.º 5 (18 de agosto de 2021): 1719–31. http://dx.doi.org/10.1007/s11224-021-01816-9.
Texto completo da fonteHo Lee, Phil, Kooyeon Lee, Jun Hwan Shim, Seong Guk Lee e Sundae Kim. "Regioselective Synthesis of 4-Alkylpyridines from Pyridine and Aldehydes via Dipole Reversal Process of 1,4-Dihydropyridine Phosphonate". HETEROCYCLES 67, n.º 2 (2006): 777. http://dx.doi.org/10.3987/com-05-s(t)49.
Texto completo da fonteCorbet, Matthieu, Michiel de Greef e Samir Z. Zard. "A Highly Conjunctive β-Keto Phosphonate: Application to the Synthesis of Pyridine Alkaloids Xestamines C, E, and H". Organic Letters 10, n.º 2 (janeiro de 2008): 253–56. http://dx.doi.org/10.1021/ol702590f.
Texto completo da fonteShih, Hao-Wei, Kuo-Ting Chen e Wei-Chieh Cheng. "One-pot synthesis of phosphate diesters and phosphonate monoesters via a combination of microwave-CCl3CN–pyridine coupling conditions". Tetrahedron Letters 53, n.º 2 (janeiro de 2012): 243–46. http://dx.doi.org/10.1016/j.tetlet.2011.11.032.
Texto completo da fonteHolý, Antonín, Miloš Buděšínský, Jaroslav Podlaha e Ivana Císařová. "Synthesis of Quaternary 1-[2-(Phosphonomethoxy)ethyl] Derivatives of 2,4-Diaminopyrimidine and Related Acyclic Nucleotide Analogs". Collection of Czechoslovak Chemical Communications 64, n.º 2 (1999): 242–56. http://dx.doi.org/10.1135/cccc19990242.
Texto completo da fonteMurugavel, Ramaswamy, e Swaminathan Shanmugan. "Assembling metal phosphonates in the presence of monodentate-terminal and bidentate-bridging pyridine ligands. Use of non-covalent and covalent-coordinate interactions to build polymeric metal–phosphonate architectures". Dalton Transactions, n.º 39 (2008): 5358. http://dx.doi.org/10.1039/b805848b.
Texto completo da fonteMato-Iglesias, Marta, Edina Balogh, Carlos Platas-Iglesias, Éva Tóth, Andrés de Blas e Teresa Rodríguez Blas. "Pyridine and phosphonate containing ligands for stable lanthanide complexation. An experimental and theoretical study to assess the solution structure". Dalton Trans., n.º 45 (2006): 5404–15. http://dx.doi.org/10.1039/b611544f.
Texto completo da fonteHancock, Robert D., Arthur E. Martell, Dian Chen, Ramunas J. Motekaitis e Derek McManus. "Design of ligands for the complexation of Fe(II)/Fe(III) in the catalytic oxidation of H2S to sulfur". Canadian Journal of Chemistry 75, n.º 5 (1 de maio de 1997): 591–600. http://dx.doi.org/10.1139/v97-070.
Texto completo da fonteShih, Hao-Wei, Kuo-Ting Chen e Wei-Chieh Cheng. "ChemInform Abstract: One-Pot Synthesis of Phosphate Diesters and Phosphonate Monoesters via a Combination of Microwave-CCl3-Pyridine Coupling Conditions." ChemInform 43, n.º 17 (29 de março de 2012): no. http://dx.doi.org/10.1002/chin.201217189.
Texto completo da fonteTrofimov, Boris A., Pavel A. Volkov e Anton A. Telezhkin. "Electron-Deficient Acetylenes as Three-Modal Adjuvants in SNH Reaction of Pyridinoids with Phosphorus Nucleophiles". Molecules 26, n.º 22 (11 de novembro de 2021): 6824. http://dx.doi.org/10.3390/molecules26226824.
Texto completo da fontePodstawka, Edyta, Tomasz K. Olszewski, Bogdan Boduszek e Leonard M. Proniewicz. "Adsorbed States of Phosphonate Derivatives ofN-Heterocyclic Aromatic Compounds, Imidazole, Thiazole, and Pyridine on Colloidal Silver: Comparison with a Silver Electrode". Journal of Physical Chemistry B 113, n.º 35 (3 de setembro de 2009): 12013–18. http://dx.doi.org/10.1021/jp9050116.
Texto completo da fonteTelezhkin, A. A., P. A. Volkov e K. O. Khrapova. "Nucleophilic substitution of hydrogen in pyridine and its derivatives by organophosphorus nucleophiles in the presence of electron-deficient acetylenes". Журнал органической химии 59, n.º 10 (15 de dezembro de 2023): 1269–300. http://dx.doi.org/10.31857/s0514749223100026.
Texto completo da fonteDrahoš, Bohuslav, Jan Kotek, Ivana Cı́sařová, Petr Hermann, Lothar Helm, Ivan Lukeš e Éva Tóth. "Mn2+Complexes with 12-Membered Pyridine Based Macrocycles Bearing Carboxylate or Phosphonate Pendant Arm: Crystallographic, Thermodynamic, Kinetic, Redox, and1H/17O Relaxation Studies". Inorganic Chemistry 50, n.º 24 (19 de dezembro de 2011): 12785–801. http://dx.doi.org/10.1021/ic201935r.
Texto completo da fontePodstawka, Edyta, Andrzej Kudelski, Tomasz K. Olszewski e Bogdan Boduszek. "Surface-Enhanced Raman Scattering Studies on the Interaction of Phosphonate Derivatives of Imidazole, Thiazole, and Pyridine with a Silver Electrode in Aqueous Solution". Journal of Physical Chemistry B 113, n.º 29 (23 de julho de 2009): 10035–42. http://dx.doi.org/10.1021/jp902328j.
Texto completo da fonteCummings, Charles Y., Jay D. Wadhawan, Takuya Nakabayashi, Masa-aki Haga, Liza Rassaei, Sara E. C. Dale, Simon Bending, Martin Pumera, Stephen C. Parker e Frank Marken. "Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO2 film". Journal of Electroanalytical Chemistry 657, n.º 1-2 (julho de 2011): 196–201. http://dx.doi.org/10.1016/j.jelechem.2011.04.010.
Texto completo da fonteBaba, Kazuaki, Kojiro Nagata, Tatsuo Yajima e Takashi Yoshimura. "Synthesis, Structures, and Equilibrium Reactions of La(III) and Ba(II) Complexes with Pyridine Phosphonate Pendant Arms on a Diaza-18-crown-6 Ether". Bulletin of the Chemical Society of Japan 95, n.º 3 (15 de março de 2022): 466–75. http://dx.doi.org/10.1246/bcsj.20210414.
Texto completo da fonteKiefer, Garry E., e Mark Woods. "Solid State and Solution Dynamics of Pyridine Based Tetraaza-Macrocyclic Lanthanide Chelates Possessing Phosphonate Ligating Functionality (Ln-PCTMB): Effect on Relaxometry and Optical Properties". Inorganic Chemistry 48, n.º 24 (21 de dezembro de 2009): 11767–78. http://dx.doi.org/10.1021/ic901779k.
Texto completo da fontePhilippov, Igor, Yuriy Gatilov, Alina Sonina e Aleksey Vorob’ev. "Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5-a]Pyridine-3-phosphonates". Molecules 27, n.º 22 (16 de novembro de 2022): 7913. http://dx.doi.org/10.3390/molecules27227913.
Texto completo da fonteSun, Kai, Xiao-Lan Chen, Xu Li, Ling-Bo Qu, Wen-Zhu Bi, Xi Chen, Hui-Li Ma et al. "H-phosphonate-mediated sulfonylation of heteroaromatic N-oxides: a mild and metal-free one-pot synthesis of 2-sulfonyl quinolines/pyridines". Chemical Communications 51, n.º 60 (2015): 12111–14. http://dx.doi.org/10.1039/c5cc04484g.
Texto completo da fonteWilk-Kozubek, Magdalena, Katarzyna N. Jarzembska, Jan Janczak e Veneta Videnova-Adrabinska. "Synthesis, structural characterization and computational studies of catena-poly[chlorido[μ3-(pyridin-1-ium-3-yl)phosphonato-κ3 O:O′:O′′]zinc(II)]". Acta Crystallographica Section C Structural Chemistry 73, n.º 5 (5 de abril de 2017): 363–68. http://dx.doi.org/10.1107/s2053229617004478.
Texto completo da fonteStawinski, J., R. Strömberg e E. Westman. "Ribonucleoside H-Phosphonates. Pyridine vs Quinoline - Influence on Condensation Rate". Nucleosides and Nucleotides 10, n.º 1-3 (janeiro de 1991): 519–20. http://dx.doi.org/10.1080/07328319108046514.
Texto completo da fonte