Literatura científica selecionada sobre o tema "Public health Data processing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Public health Data processing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Public health Data processing"
Taylor, Mark J., e Tess Whitton. "Public Interest, Health Research and Data Protection Law: Establishing a Legitimate Trade-Off between Individual Control and Research Access to Health Data". Laws 9, n.º 1 (14 de fevereiro de 2020): 6. http://dx.doi.org/10.3390/laws9010006.
Texto completo da fonteSiriwardena, N., e M. Dharmawardhana. "Real time data collection and processing using mobile technology: A public health perspective". Sri Lanka Journal of Bio-Medical Informatics 1 (24 de outubro de 2011): 7. http://dx.doi.org/10.4038/sljbmi.v1i0.3539.
Texto completo da fonteRodriguez Ayuso, Juan Francisco. "Processing of personal data relating to the health of the data subject in a pandemic situation". Glimpse 22, n.º 1 (2021): 95–99. http://dx.doi.org/10.5840/glimpse202122115.
Texto completo da fonteJones, Julie Miller. "Food processing: criteria for dietary guidance and public health?" Proceedings of the Nutrition Society 78, n.º 1 (25 de setembro de 2018): 4–18. http://dx.doi.org/10.1017/s0029665118002513.
Texto completo da fonteBecker, Regina, Adrian Thorogood, Johan Ordish e Michael J. S. Beauvais. "COVID-19 Research: Navigating the European General Data Protection Regulation". Journal of Medical Internet Research 22, n.º 8 (27 de agosto de 2020): e19799. http://dx.doi.org/10.2196/19799.
Texto completo da fonteCummings, Stuart W. "Distributed Databases for Clinical Data Processing". Drug Information Journal 27, n.º 4 (outubro de 1993): 949–56. http://dx.doi.org/10.1177/009286159302700403.
Texto completo da fontePimazzoni, Monica. "Global Data Management: A Winning Approach to Clinical Data Processing". Drug Information Journal 32, n.º 2 (abril de 1998): 569–71. http://dx.doi.org/10.1177/009286159803200230.
Texto completo da fonteWoods, Valerie. "Musculoskeletal disorders and visual strain in intensive data processing workers". Occupational Medicine 55, n.º 2 (1 de março de 2005): 121–27. http://dx.doi.org/10.1093/occmed/kqi029.
Texto completo da fonteDetermann, Lothar. "Healthy Data Protection". Michigan Technology Law Review, n.º 26.2 (2020): 229. http://dx.doi.org/10.36645/mtlr.26.2.healthy.
Texto completo da fonteWu, Hong Jiang, Xiang Yang Liu, Hai Yan Zhao e Xiao Ting Li. "Research on Public Health Service Systems Based on Cloud Computing". Applied Mechanics and Materials 687-691 (novembro de 2014): 2849–52. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.2849.
Texto completo da fonteTeses / dissertações sobre o assunto "Public health Data processing"
Chitondo, Pepukayi David Junior. "Data policies for big health data and personal health data". Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2479.
Texto completo da fonteHealth information policies are constantly becoming a key feature in directing information usage in healthcare. After the passing of the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and the Affordable Care Act (ACA) passed in 2010, in the United States, there has been an increase in health systems innovations. Coupling this health systems hype is the current buzz concept in Information Technology, „Big data‟. The prospects of big data are full of potential, even more so in the healthcare field where the accuracy of data is life critical. How big health data can be used to achieve improved health is now the goal of the current health informatics practitioner. Even more exciting is the amount of health data being generated by patients via personal handheld devices and other forms of technology that exclude the healthcare practitioner. This patient-generated data is also known as Personal Health Records, PHR. To achieve meaningful use of PHRs and healthcare data in general through big data, a couple of hurdles have to be overcome. First and foremost is the issue of privacy and confidentiality of the patients whose data is in concern. Secondly is the perceived trustworthiness of PHRs by healthcare practitioners. Other issues to take into context are data rights and ownership, data suppression, IP protection, data anonymisation and reidentification, information flow and regulations as well as consent biases. This study sought to understand the role of data policies in the process of data utilisation in the healthcare sector with added interest on PHRs utilisation as part of big health data.
Indrakanti, Saratchandra. "Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804902/.
Texto completo da fonteAsiimwe, Sarah. "Use of health information for operational and strategic decision-making by division level managers of Kampala City Council Health Department". Thesis, University of the Western Cape, 2002. http://etd.uwc.ac.za/index.php?module=etd&.
Texto completo da fonteO'Donnell, Melissa. "Towards prevention - a population health approach to child abuse and neglect : health indicators and the identification of antecedent causal pathways". University of Western Australia. School of Paediatrics and Child Health, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0029.
Texto completo da fonteChartree, Jedsada. "Monitoring Dengue Outbreaks Using Online Data". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500167/.
Texto completo da fonteMchunu, Nokubalela Ntombiyethu. "Adequacy of healthcare information systems to support data quality in the public healthcare sector, in the Western Cape, South Africa". Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/1387.
Texto completo da fonteHealthcare services are vital to all human beings, as our daily lives depend on them. In South Africa approximately eighty per cent of the population uses the public healthcare services. In the current healthcare systems data corruption exists which threatens data quality in the systems. The aim of this study was to understand the existing information handling processes and factors that affect the accuracy and integrity of healthcare data. A qualitative research methodology, under the interpretive paradigm was used for this investigation. Activity theory is used to formulate an analytical framework, the “healthcare information system data quality activity theory framework”. This was very helpful for understanding the healthcare information handling process as an activity system that consists of actors with individual goals. Though the goals are varied, they are joined together by the common objective. The logic of the framework is that a realisation of goals in the activity system depends on a number of factors. At the beginning, there must be a synchronous inter-linkage between the goals of the actors, the mediating factors such as adequate tools, user skills, enabling policies, and the systematic procedures that are diligently enforced. It is assumed that any situation which prevents this inter-linkage will have a negative impact on the realisation of the sought objective. The framework therefore, was very helpful in informing questions, the data collection and ultimately, the analysis processes. The public healthcare sector is the main source of data; other sources were literature, the Internet and books. The analysis of data was done using content analysis to find what themes emerge and the relationship (s) between them in what is being analysed. The findings reveal a lack of adherence to information handling procedures and processes which lead to corrupt data in the systems. In addition, most users have limited skills, which is a hindrance to them in performing their duties as expected by the healthcare sector. In fact, the healthcare sector is also challenged by systems which are constantly slow or down, due to limited network capacity and human errors. The presence of these challenges suggests non-adherence to data handling procedures, which explains the existing corrupt data in the healthcare systems. Therefore the recommendation is that the public healthcare administration must enhance their training programs. The training must be re-designed to cater for the needs of all users, regardless of their background. It needs to improve user skills and boast their confidence in using electronic systems. Obviously, any changes and improvements need to be sustainable, and the sector is unlikely to succeed without enforcement of new procedures. Therefore, adherence to data handling procedures must be strictly enforced, with policies thoroughly communicated to the users. That way, the sector will not only have systems and related policies, but also ensure their full exploitation for improved service delivery in the public healthcare sector in South Africa.
Wilmot, Peter Nicholas. "Modelling cooling tower risk for Legionnaires' Disease using Bayesian Networks and Geographic Information Systems". Title page, contents and conclusion only, 1999. http://web4.library.adelaide.edu.au/theses/09SIS.M/09sismw744.pdf.
Texto completo da fonteLin, Dong. "Novel FDBC with creative technology for integrating advantages of distributed and centralized systems". Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2492977.
Texto completo da fonteVuorio, R. (Riikka). "Use of public sector’s open spatial data in commercial applications". Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201311201883.
Texto completo da fontePonsimaa, P. (Petteri). "Discovering value for health with grocery shopping data". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201605221849.
Texto completo da fonteLivros sobre o assunto "Public health Data processing"
Kenkyūjo, Tōkyō Toritsu Eisei. Eisei gyōsei jōhō shisutemu no kaihatsu ni kansuru kenkyū. Tōkyō: Tōkyō Toritsu Eisei Kenkyūjo, 2000.
Encontre o texto completo da fonteMontana. Legislature. Legislative Audit Division. Medicaid data review: Department of Public Health and Human Services. Helena, MT: Legislative Audit Division, 2007.
Encontre o texto completo da fonteQuébec (Province). Ministère de la santé et des services sociaux. Direction des systèmes d'information. Informatisation du réseau de la santé et des services sociaux: Portrait. [Québec]: Gouvernement du Québec, Ministère de la santé et des services sociaux, Direction des systèmes d'information, 1990.
Encontre o texto completo da fonteAustralian Institute of Health and Welfare. National health information model: Version 2. Canberra: Australian Institute of Health and Welfare, 2003.
Encontre o texto completo da fonte1951-, McLafferty Sara, ed. GIS and public health. 2a ed. New York: The Guilford Press, 2012.
Encontre o texto completo da fonteIntroduction to geographic information systems in public health. Gaithersburg, Md: Aspen Publishers, 2002.
Encontre o texto completo da fonteBasile, Kathleen C. Sexual violence surveillance: Uniform definitions and recommended data elements. Atlanta, Ga: Centers for Disase Control and Prevention, National Center for Injury Prevention and Control, 2009.
Encontre o texto completo da fonteBasile, Kathleen C. Sexual violence surveillance: Uniform definitions and recommended data elements. Atlanta, Ga: Centers for Disase Control and Prevention, National Center for Injury Prevention and Control, 2009.
Encontre o texto completo da fonteBasile, Kathleen C. Sexual violence surveillance: Uniform definitions and recommended data elements. Atlanta, Ga: Centers for Disase Control and Prevention, National Center for Injury Prevention and Control, 2009.
Encontre o texto completo da fonteBasile, Kathleen C. Sexual violence surveillance: Uniform definitions and recommended data elements. Atlanta, Ga: Centers for Disase Control and Prevention, National Center for Injury Prevention and Control, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Public health Data processing"
Li, Zhenlong, Zhipeng Gui, Barbara Hofer, Yan Li, Simon Scheider e Shashi Shekhar. "Geospatial Information Processing Technologies". In Manual of Digital Earth, 191–227. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9915-3_6.
Texto completo da fonteNatsiavas, Pantelis, Nicos Maglaveras e Vassilis Koutkias. "A Public Health Surveillance Platform Exploiting Free-Text Sources via Natural Language Processing and Linked Data: Application in Adverse Drug Reaction Signal Detection Using PubMed and Twitter". In Knowledge Representation for Health Care, 51–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55014-5_4.
Texto completo da fonteNordberg, Ana. "Biobank and Biomedical Research: Responsibilities of Controllers and Processors Under the EU General Data Protection Regulation". In GDPR and Biobanking, 61–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49388-2_5.
Texto completo da fonteDobrin, Adam. "Public Health Data". In Homicide Data Sources, 19–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19881-1_3.
Texto completo da fonteFlowers, Julian, e Katie Johnson. "Data Presentation". In Public Health Intelligence, 203–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28326-5_11.
Texto completo da fonteChassang, Gauthier, Michael Hisbergues e Emmanuelle Rial-Sebbag. "Research Biobanking, Personal Data Protection and Implementation of the GDPR in France". In GDPR and Biobanking, 257–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49388-2_14.
Texto completo da fonteChoisy, Marc, Philavanh Sitboulang, Malyvanh Vongpanhya, Chantalay Saiyavong, Bouaphanh Khamphaphongphanh, Bounlay Phommasack, Fabrice Quet, Yves Buisson, Jean-Daniel Zucker e Wilbert van Pahuis. "Rescuing Public Health Data". In Socio-Ecological Dimensions of Infectious Diseases in Southeast Asia, 171–90. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-527-3_11.
Texto completo da fonteFüller, Henning. "Biosecuring public health". In Big Data, Surveillance and Crisis Management, 81–97. 1 Edition. | New York : Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315638423-5.
Texto completo da fonteMalley, Brian, Daniele Ramazzotti e Joy Tzung-yu Wu. "Data Pre-processing". In Secondary Analysis of Electronic Health Records, 115–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43742-2_12.
Texto completo da fonteRassia, Stamatina Th. "Research Data Collection". In SpringerBriefs in Public Health, 33–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53444-2_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Public health Data processing"
Setyowati, Maryani, e Vilda Ana Viera Setyawati. "Implementation of Maternal Health Data Processing of Computerization for Preventing the Case of Maternal Mortality by Midwives at Puskesmas in Supporting SDG's Achievements". In The 2nd International Symposium of Public Health. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007511502020208.
Texto completo da fonteBudiningsari, R. Dwi, e Ika Ratna Palupi. "Knowledge, Attitude and Practice on Food Hygiene and Sanitation, Optimistic Bias of Food Handlers, and their Association with Participation in Food Safety Training at A Hospital in Yogyakarta". In The 7th International Conference on Public Health 2020. Masters Program in Public Health, Universitas Sebelas Maret, 2020. http://dx.doi.org/10.26911/the7thicph.04.13.
Texto completo da fonteLanda, Beinish. "Public Health as a Social Issue: The Role of Digital Technologies Originating from the Internet & Big Data Era". In The Public/Private in Modern Civilization, the 22nd Russian Scientific-Practical Conference (with international participation) (Yekaterinburg, April 16-17, 2020). Liberal Arts University – University for Humanities, Yekaterinburg, 2020. http://dx.doi.org/10.35853/ufh-public/private-2020-69.
Texto completo da fonteDewantara, Bayu Putra, Bhisma Murti e Vitri Widyaningsih. "Factors Affecting the Use of Personal Protective Equipment among Workers at A Plywood Plants, in Lumajang, East Java: Application of Health Belief Model and Social Cognitive Theory". In The 7th International Conference on Public Health 2020. Masters Program in Public Health, Universitas Sebelas Maret, 2020. http://dx.doi.org/10.26911/the6thicph.02.50.
Texto completo da fonteChowdhury, Souma, e Ali Mehmani. "Optimal Metamodeling to Interpret Activity-Based Health Sensor Data". In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68385.
Texto completo da fonteHan, Zhuoyang, Ang Li e Yu Sun. "An Automated Data-Driven Prediction of Product Pricing Based on Covid-19 Case Number using Data Mining and Machine Learning". In 9th International Conference on Natural Language Processing (NLP 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101420.
Texto completo da fonteLi, Xue, Xin Zhao e Mingyang Zhong. "Advancing public health genomics". In 2016 International Workshop on Big Data and Information Security (IWBIS). IEEE, 2016. http://dx.doi.org/10.1109/iwbis.2016.7872883.
Texto completo da fonteKatsis, Yannis, Nikos Koulouris, Yannis Papakonstantinou e Kevin Patrick. "Assisting Discovery in Public Health". In SIGMOD/PODS'17: International Conference on Management of Data. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3077257.3077269.
Texto completo da fonteAnisetti, Marco, Valerio Bellandi, Marco Cremonini, Ernesto Damiani e Jonatan Maggesi. "Big data platform for public health policies". In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017. http://dx.doi.org/10.1109/uic-atc.2017.8397457.
Texto completo da fontePotash, Eric, Joe Brew, Alexander Loewi, Subhabrata Majumdar, Andrew Reece, Joe Walsh, Eric Rozier, Emile Jorgenson, Raed Mansour e Rayid Ghani. "Predictive Modeling for Public Health". In KDD '15: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2783258.2788629.
Texto completo da fonteRelatórios de organizações sobre o assunto "Public health Data processing"
McCabe, Ashleigh. Description of the MHS Health Level 7 Pharmacy Intravenous Data for Public Health Surveillance. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2009. http://dx.doi.org/10.21236/ada596897.
Texto completo da fonteMcCabe, Ashleigh. Description of the MHS Health Level 7 Pharmacy Outpatient Data for Public Health Surveillance. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2009. http://dx.doi.org/10.21236/ada597305.
Texto completo da fonteMcCabe, Ashleigh. Description of the MHS Health Level 7 Pharmacy Unit-Dose Data for Public Health Surveillance. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2009. http://dx.doi.org/10.21236/ada596834.
Texto completo da fonteDague, Laura, Thomas DeLeire, Donna Friedsam, Daphne Kuo, Lindsey Leininger, Sarah Meier e Kristen Voskuil. Estimates of Crowd-Out from a Public Health Insurance Expansion Using Administrative Data. Cambridge, MA: National Bureau of Economic Research, maio de 2011. http://dx.doi.org/10.3386/w17009.
Texto completo da fonteWetmore, Alan, e Thomas DeFelice. ARL Support and Analysis to the Army Public Health Command Kabul Air Quality Data Collection (Spring 2014). Fort Belvoir, VA: Defense Technical Information Center, maio de 2016. http://dx.doi.org/10.21236/ad1011920.
Texto completo da fonteZinn, Zachary. Surveillance and the ‘New Normal’ of Covid-19: Public Health, Data, and Justice | Social Science Research Council. Social Science Research Council, fevereiro de 2021. http://dx.doi.org/10.35650/ssrc.2080.d.2021.
Texto completo da fonteAma Pokuaa, Fenny, Aba Obrumah Crentsil, Christian Kwaku Osei e Felix Ankomah Asante. Fiscal and Public Health Impact of a Change in Tobacco Excise Taxes in Ghana. Institute of Development Studies (IDS), novembro de 2020. http://dx.doi.org/10.19088/ictd.2020.003.
Texto completo da fonteWiecha, Jean L., e Mary K. Muth. Agreements Between Public Health Organizations and Food and Beverage Companies: Approaches to Improving Evaluation. RTI Press, janeiro de 2021. http://dx.doi.org/10.3768/rtipress.2021.op.0067.2101.
Texto completo da fonteKowalski, Amanda. What Do Longitudinal Data on Millions of Hospital Visits Tell us About The Value of Public Health Insurance as a Safety Net for the Young and Privately Insured? Cambridge, MA: National Bureau of Economic Research, janeiro de 2015. http://dx.doi.org/10.3386/w20887.
Texto completo da fonteCuesta, Ana, Lucia Delgado, Sebastián Gallegos, Benjamin Roseth e Mario Sánchez. Increasing the Take-up of Public Health Services: An Experiment on Nudges and Digital Tools in Uruguay. Inter-American Development Bank, julho de 2021. http://dx.doi.org/10.18235/0003397.
Texto completo da fonte