Artigos de revistas sobre o tema "Proximity-Based Control"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Proximity-Based Control".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mauer, Georg F. "An end-effector based imaging proximity sensor". Journal of Robotic Systems 6, n.º 3 (junho de 1989): 301–16. http://dx.doi.org/10.1002/rob.4620060307.
Texto completo da fonteDi Mauro, G., M. Schlotterer, S. Theil e M. Lavagna. "Nonlinear Control for Proximity Operations Based on Differential Algebra". Journal of Guidance, Control, and Dynamics 38, n.º 11 (novembro de 2015): 2173–87. http://dx.doi.org/10.2514/1.g000842.
Texto completo da fonteMatsunaga, Shigeki, e Masakatsu Shibasaki. "Multimetallic Bifunctional Asymmetric Catalysis Based on Proximity Effect Control". Bulletin of the Chemical Society of Japan 81, n.º 1 (15 de janeiro de 2008): 60–75. http://dx.doi.org/10.1246/bcsj.81.60.
Texto completo da fonteGarrido-Martinez, Jessenia, e Patricio Medina-Chicaiza. "Electoral Advertising Based on Proximity Marketing". International Business Research 12, n.º 9 (26 de agosto de 2019): 52. http://dx.doi.org/10.5539/ibr.v12n9p52.
Texto completo da fonteLong, Jiateng, e Fen Wu. "Iterative-Learning-Control-Based Tracking for Asteroid Close-Proximity Operations". Journal of Guidance, Control, and Dynamics 42, n.º 5 (maio de 2019): 1195–203. http://dx.doi.org/10.2514/1.g003884.
Texto completo da fonteTamayo Segarra, Jose Ignacio, Bilal Al Jammal e Hakima Chaouchi. "New IoT proximity service based heterogeneous RFID readers collision control". PSU Research Review 1, n.º 2 (14 de agosto de 2017): 127–49. http://dx.doi.org/10.1108/prr-03-2017-0019.
Texto completo da fonteSun, Liang, e Zewei Zheng. "Disturbance Observer-Based Robust Saturated Control for Spacecraft Proximity Maneuvers". IEEE Transactions on Control Systems Technology 26, n.º 2 (março de 2018): 684–92. http://dx.doi.org/10.1109/tcst.2017.2669145.
Texto completo da fonteSeverson, Frederick E. "Proximity control of on-board processor-based model train sound and control system". Journal of the Acoustical Society of America 126, n.º 2 (2009): 930. http://dx.doi.org/10.1121/1.3204334.
Texto completo da fonteKurahashi, A., M. Adachi e M. Idesawa. "A prototype of optical proximity sensor based on RORS". Journal of Robotic Systems 3, n.º 2 (março de 1986): 183–90. http://dx.doi.org/10.1002/rob.4620030206.
Texto completo da fonteAgudo, Isaac, Ruben Rios e Javier Lopez. "A privacy-aware continuous authentication scheme for proximity-based access control". Computers & Security 39 (novembro de 2013): 117–26. http://dx.doi.org/10.1016/j.cose.2013.05.004.
Texto completo da fonteLi, Qi, Jianping Yuan, Bo Zhang e Huan Wang. "Disturbance observer based control for spacecraft proximity operations with path constraint". Aerospace Science and Technology 79 (agosto de 2018): 154–63. http://dx.doi.org/10.1016/j.ast.2018.05.042.
Texto completo da fonteStanfield, Kyl, e Ahmad Bani Younes. "Dual-Quaternion Analytic LQR Control Design for Spacecraft Proximity Operations". Sensors 21, n.º 11 (21 de maio de 2021): 3597. http://dx.doi.org/10.3390/s21113597.
Texto completo da fonteSun, Chen, Jean M. Uwabeza Vianney, Ying Li, Long Chen, Li Li, Fei-Yue Wang, Amir Khajepour e Dongpu Cao. "Proximity based automatic data annotation for autonomous driving". IEEE/CAA Journal of Automatica Sinica 7, n.º 2 (março de 2020): 395–404. http://dx.doi.org/10.1109/jas.2020.1003033.
Texto completo da fonteSalahi, Maziar, Tamás Terlaky e Guoqing Zhang. "The Complexity of Self-Regular Proximity Based Infeasible IPMs". Computational Optimization and Applications 33, n.º 2-3 (18 de outubro de 2005): 157–85. http://dx.doi.org/10.1007/s10589-005-3064-1.
Texto completo da fonteUlrich, Steve, Alvar Saenz-Otero e Itzhak Barkana. "Passivity-Based Adaptive Control of Robotic Spacecraft for Proximity Operations Under Uncertainties". Journal of Guidance, Control, and Dynamics 39, n.º 6 (junho de 2016): 1444–53. http://dx.doi.org/10.2514/1.g001491.
Texto completo da fonteYang, Juntang, e Enrico Stoll. "Adaptive Sliding Mode Control for Spacecraft Proximity Operations Based on Dual Quaternions". Journal of Guidance, Control, and Dynamics 42, n.º 11 (novembro de 2019): 2356–68. http://dx.doi.org/10.2514/1.g004435.
Texto completo da fonteSun, Liang. "Passivity-Based Adaptive Finite-Time Trajectory Tracking Control for Spacecraft Proximity Operations". Journal of Spacecraft and Rockets 53, n.º 1 (janeiro de 2016): 46–56. http://dx.doi.org/10.2514/1.a33288.
Texto completo da fontePan, Xiao, Alessandro A. Quarta, Giovanni Mengali e Ming Xu. "Linearized relative motion and proximity control of E-sail-based displaced orbits". Aerospace Science and Technology 99 (abril de 2020): 105574. http://dx.doi.org/10.1016/j.ast.2019.105574.
Texto completo da fonteFatimah, Qori Izmi, Rivaldo Marselino e Asnil Asnil. "Web-Based DC Motor Speed Design and Control". MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering 3, n.º 3 (2 de setembro de 2021): 101–12. http://dx.doi.org/10.46574/motivection.v3i3.99.
Texto completo da fonteBudán, Maximiliano C. D., Maria Laura Cobo, Diego C. Martinez e Guillermo R. Simari. "Proximity semantics for topic-based abstract argumentation". Information Sciences 508 (janeiro de 2020): 135–53. http://dx.doi.org/10.1016/j.ins.2019.08.037.
Texto completo da fonteKoyama, Keisuke, Makoto Shimojo, Aiguo Ming e Masatoshi Ishikawa. "Integrated control of a multiple-degree-of-freedom hand and arm using a reactive architecture based on high-speed proximity sensing". International Journal of Robotics Research 38, n.º 14 (25 de setembro de 2019): 1717–50. http://dx.doi.org/10.1177/0278364919875811.
Texto completo da fonteSato, Ryuki, Hikaru Arita e Aiguo Ming. "Pre-Landing Control for a Legged Robot Based on Tiptoe Proximity Sensor Feedback". IEEE Access 10 (2022): 21619–30. http://dx.doi.org/10.1109/access.2022.3153127.
Texto completo da fonteMuddu, Swamy. "Auxiliary pattern-based optical proximity correction for better printability, timing, and leakage control". Journal of Micro/Nanolithography, MEMS, and MOEMS 7, n.º 1 (1 de janeiro de 2008): 013002. http://dx.doi.org/10.1117/1.2898504.
Texto completo da fonteNam, Byung-Ho, e Hyung-J. Lee. "Gate CD Control for memory Chip using Total Process Proximity Based Correction Method". Journal of the Optical Society of Korea 6, n.º 4 (1 de dezembro de 2002): 180–84. http://dx.doi.org/10.3807/josk.2002.6.4.180.
Texto completo da fonteKleinsasser, A. W. "Transistors based on proximity effect control of the critical current of a superconductor". IEEE Transactions on Applied Superconductivity 3, n.º 1 (março de 1993): 1968–71. http://dx.doi.org/10.1109/77.233573.
Texto completo da fonteXia, Kewei, e Yao Zou. "Neuroadaptive saturated control for relative motion based noncooperative spacecraft proximity with prescribed performance". Acta Astronautica 180 (março de 2021): 361–69. http://dx.doi.org/10.1016/j.actaastro.2020.12.052.
Texto completo da fonteWu, Shunan, Shenghui Wen, Yuliang Liu e Kaiming Zhang. "Robust Adaptive Learning Control for Spacecraft Autonomous Proximity Maneuver". International Journal of Pattern Recognition and Artificial Intelligence 31, n.º 05 (27 de fevereiro de 2017): 1759007. http://dx.doi.org/10.1142/s0218001417590078.
Texto completo da fonteSalahi, Maziar, e Tamás Terlaky. "An adaptive self-regular proximity-based large-update IPM for LO". Optimization Methods and Software 20, n.º 1 (fevereiro de 2005): 169–85. http://dx.doi.org/10.1080/10556780412331332024.
Texto completo da fonteHasegawa, Hiroaki, Yosuke Suzuki, Aiguo Ming, Masatoshi Ishikawa e Makoto Shimojo. "Robot Hand Whose Fingertip Covered with Net-Shape Proximity Sensor - Moving Object Tracking Using Proximity Sensing -". Journal of Robotics and Mechatronics 23, n.º 3 (20 de junho de 2011): 328–37. http://dx.doi.org/10.20965/jrm.2011.p0328.
Texto completo da fonteWulandari, Rindi, M. Riyad Ariwibowo, Taryo Taryo e Galieh Ananda. "Design Smart Trash Based On the Inductive Proximity Sensor". International Journal of Multidisciplinary Approach Research and Science 2, n.º 01 (27 de novembro de 2023): 194–200. http://dx.doi.org/10.59653/ijmars.v2i01.394.
Texto completo da fonteSun, Chuqi, Yan Xiao, Zhaowei Sun e Dong Ye. "Dual Quaternion Based Close Proximity Operation for In-Orbit Assembly via Model Predictive Control". International Journal of Aerospace Engineering 2021 (12 de novembro de 2021): 1–14. http://dx.doi.org/10.1155/2021/1305095.
Texto completo da fonteDas, Bishnu Ram, Gitali Kakoti, Mandira Chetri e Pranabjit Biswanath. "Eco-epidemiological risk factors for Japanese encephalitis in the endemic region of North East India: a hospital-based case-control study". encephalitis 2, n.º 4 (10 de outubro de 2022): 108–15. http://dx.doi.org/10.47936/encephalitis.2022.00066.
Texto completo da fonteLevin, Ines. "Learning about Spatial and Temporal Proximity using Tree-Based Methods". Statistics, Politics and Policy 13, n.º 1 (1 de março de 2022): 73–95. http://dx.doi.org/10.1515/spp-2021-0031.
Texto completo da fonteSajini, S., e B. Pushpa. "Sensor Enabled Proximity Detection with Hybridisation of IoT and Computer Vision Models to Assist the Visually Impaired". Engineering, Technology & Applied Science Research 13, n.º 6 (5 de dezembro de 2023): 12284–88. http://dx.doi.org/10.48084/etasr.6410.
Texto completo da fonteWon, Jae-Yeon, Hyunsurk Ryu, Tobi Delbruck, Jun Haeng Lee e Jiang Hu. "Proximity Sensing Based on a Dynamic Vision Sensor for Mobile Devices". IEEE Transactions on Industrial Electronics 62, n.º 1 (janeiro de 2015): 536–44. http://dx.doi.org/10.1109/tie.2014.2334667.
Texto completo da fonteLohan, Elena Simona, Viktoriia Shubina e Dragoș Niculescu. "Perturbed-Location Mechanism for Increased User-Location Privacy in Proximity Detection and Digital Contact-Tracing Applications". Sensors 22, n.º 2 (17 de janeiro de 2022): 687. http://dx.doi.org/10.3390/s22020687.
Texto completo da fonteHirai, Yuji, Takuya Mizukami, Yosuke Suzuki, Tokuo Tsuji e Tetsuyou Watanabe. "Hierarchical Proximity Sensor for High-Speed and Intelligent Control of Robotic Hand". Journal of Robotics and Mechatronics 31, n.º 3 (20 de junho de 2019): 453–63. http://dx.doi.org/10.20965/jrm.2019.p0453.
Texto completo da fonteAlsaade, Fawaz W., Qijia Yao, Mohammed S. Al-zahrani, Ali S. Alzahrani e Hadi Jahanshahi. "Indirect-Neural-Approximation-Based Fault-Tolerant Integrated Attitude and Position Control of Spacecraft Proximity Operations". Sensors 22, n.º 5 (23 de fevereiro de 2022): 1726. http://dx.doi.org/10.3390/s22051726.
Texto completo da fonteYan, Xin, e Jia Gen Du. "On the Topology Design of Integrated Wireless Networks". Applied Mechanics and Materials 55-57 (maio de 2011): 555–60. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.555.
Texto completo da fontePascoe, R. D., O. B. Udoudo e H. J. Glass. "Efficiency of automated sorter performance based on particle proximity information". Minerals Engineering 23, n.º 10 (setembro de 2010): 806–12. http://dx.doi.org/10.1016/j.mineng.2010.05.021.
Texto completo da fonteXi, Tao, Jian Cheng Li e Wei Quan Pan. "Nonlinear Adaptive Feedback Control for Spacecraft Proximity Formation Flying". Applied Mechanics and Materials 376 (agosto de 2013): 446–50. http://dx.doi.org/10.4028/www.scientific.net/amm.376.446.
Texto completo da fonteMachida, Kazuo, Yoshitsugu Toda, Toshiaki Iwata, Yasushi Fukuda e Hidetoshi Toriu. "Sensor-based proximity operation of an astronaut reference flying robot". Advanced Robotics 9, n.º 6 (janeiro de 1994): 653–73. http://dx.doi.org/10.1163/156855395x00346.
Texto completo da fonteLin, Bin, Xiao-lang Yan, Zheng Shi e Yi-wei Yang. "A sparse matrix model-based optical proximity correction algorithm with model-based mapping between segments and control sites". Journal of Zhejiang University SCIENCE C 12, n.º 5 (maio de 2011): 436–42. http://dx.doi.org/10.1631/jzus.c1000219.
Texto completo da fonteKim, Donghyeon, e In-Ho Lee. "Deep Learning-Based Power Control Scheme for Perfect Fairness in Device-to-Device Communication Systems". Electronics 9, n.º 10 (1 de outubro de 2020): 1606. http://dx.doi.org/10.3390/electronics9101606.
Texto completo da fonteFujiwara, T., M. R. Medellin, A. Sambri, Y. Tsuda, J. Balko, V. Sumathi, J. Gregory, L. Jeys e A. Abudu. "Preoperative surgical risk stratification in osteosarcoma based on the proximity to the major vessels". Bone & Joint Journal 101-B, n.º 8 (agosto de 2019): 1024–31. http://dx.doi.org/10.1302/0301-620x.101b8.bjj-2018-0963.r1.
Texto completo da fonteSUZUKI, Yosuke. "Torque-based Control of Approaching Motion of a 2-DOF Finger with a Proximity Sensor". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2020 (2020): 2A2—K17. http://dx.doi.org/10.1299/jsmermd.2020.2a2-k17.
Texto completo da fonteLi, Qi, Bo Zhang, Jianping Yuan e Huan Wang. "Potential function based robust safety control for spacecraft rendezvous and proximity operations under path constraint". Advances in Space Research 62, n.º 9 (novembro de 2018): 2586–98. http://dx.doi.org/10.1016/j.asr.2018.08.003.
Texto completo da fonteWu, Sixi, Li Chen, Dexin Zhang, Junli Chen e Xiaowei Shao. "Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics". Advances in Space Research 66, n.º 9 (novembro de 2020): 2179–93. http://dx.doi.org/10.1016/j.asr.2020.07.034.
Texto completo da fonteYe, Jiatong, Tiancong Zhao e Hangyu Zhang. "A Pressure and Proximity Sensor Based on Laser-Induced Graphene". Sensors 24, n.º 12 (17 de junho de 2024): 3907. http://dx.doi.org/10.3390/s24123907.
Texto completo da fonteChen, Rong, Yuzhu Bai, Yong Zhao, Zhijun Chen e Tao Sheng. "Safe Proximity Operation to Rotating Non-Cooperative Spacecraft with Complex Shape Using Gaussian Mixture Model-Based Fixed-Time Control". Applied Sciences 10, n.º 17 (29 de agosto de 2020): 5986. http://dx.doi.org/10.3390/app10175986.
Texto completo da fonte