Siga este link para ver outros tipos de publicações sobre o tema: Proteins.

Artigos de revistas sobre o tema "Proteins"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Proteins".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Boege, F. "Bence Jones-Proteine. Bence Jones Proteins". LaboratoriumsMedizin 23, n.º 9 (janeiro de 1999): 477–82. http://dx.doi.org/10.1515/labm.1999.23.9.477.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Thorp, H. Holden. "Proteins, proteins everywhere". Science 374, n.º 6574 (17 de dezembro de 2021): 1415. http://dx.doi.org/10.1126/science.abn5795.

Texto completo da fonte
Resumo:
The first protein structures were determined by x-ray crystallography in 1957 by John C. Kendrew and Max F. Perutz. As a bioinorganic chemist, I was delighted that the structures were myoglobin and hemoglobin, both heme proteins with big, beautiful iron atoms. It must have been an extraordinary experience to stare at a physical model of the structures and see something that had previously only been imagined. Not long afterward, Christian B. Anfinsen Jr. proposed that the structure of a protein was thermodynamically stable. It seemed possible that the three-dimensional structure of a protein could be predicted based on the sequence of its amino acids. This “protein-folding problem,” as it came to be known, baffled scientists until this year, when the papers we’ve deemed the 2021 Breakthrough of the Year were published.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Akhter, Tahmin, S. Kanamaru e F. Arisaka. "2P043 Protein interactions among neck proteins, gp13/gp14, and the connector protein, gp15, of bacteriophage T4". Seibutsu Butsuri 45, supplement (2005): S130. http://dx.doi.org/10.2142/biophys.45.s130_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Williams, R. J. P. "Synthetic Proteins: Designer proteins". Current Biology 4, n.º 10 (outubro de 1994): 942–44. http://dx.doi.org/10.1016/s0960-9822(00)00213-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Töpfer-Petersen, E., D. Čechová, A. Henschen, M. Steinberger, A. E. Friess e A. Zucker. "Cell biology of acrosomal proteins: Zellbiologie akrosomaler Proteine". Andrologia 22, S1 (27 de abril de 2009): 110–21. http://dx.doi.org/10.1111/j.1439-0272.1990.tb02077.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Coleman, Joseph E. "Zinc Proteins: Enzymes, Storage Proteins, Transcription Factors, and Replication Proteins". Annual Review of Biochemistry 61, n.º 1 (junho de 1992): 897–946. http://dx.doi.org/10.1146/annurev.bi.61.070192.004341.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Paape, M., S. Nell, S. von Bargen e J. W. Kellmann. "Identification and characterization of host proteins interacting with NSm, the Tomato spotted wilt virus movement protein". Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (1 de janeiro de 2002): S108—S111. http://dx.doi.org/10.17221/10331-pps.

Texto completo da fonte
Resumo:
To search for host proteins involved in systemic spreading of Tomato spotted wilt virus (TSWV), the virus-encoded NSm movement protein has been utilized as a bait in yeast two-hybrid interaction trap assays. J-domain chaperones from different host species and a protein denominated At-4/1 from Arabidopsis thaliana showing homologies to myosins and kinesins were identified as NSm-interacting partners. In this communication we illustrate that following TSWV infection, J-domain proteins accumulated in systemically infected leaves of A. thaliana, whereas At-4/1 was constitutively detected in leaves of A. thaliana and Nicotiana rustica.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Doolittle, Russell F. "Proteins". Scientific American 253, n.º 4 (outubro de 1985): 88–99. http://dx.doi.org/10.1038/scientificamerican1085-88.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Deisenhofer, J. "Proteins". Current Opinion in Structural Biology 11, n.º 6 (1 de dezembro de 2001): 701–2. http://dx.doi.org/10.1016/s0959-440x(01)00273-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Brändén, Carl-Ivar, e Johann Deisenhofer. "Proteins". Current Opinion in Structural Biology 7, n.º 6 (dezembro de 1997): 819–20. http://dx.doi.org/10.1016/s0959-440x(97)80152-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Sleator, Roy D. "Proteins". Bioengineered 3, n.º 2 (março de 2012): 80–85. http://dx.doi.org/10.4161/bbug.18303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Eklund, Hans, e T. Alwyn Jones. "Proteins". Current Opinion in Structural Biology 5, n.º 6 (dezembro de 1995): 719–20. http://dx.doi.org/10.1016/0959-440x(95)80002-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Stevens, Timothy J., e Isaiah T. Arkin. "Are membrane proteins ?inside-out? proteins?" Proteins: Structure, Function, and Genetics 36, n.º 1 (1 de julho de 1999): 135–43. http://dx.doi.org/10.1002/(sici)1097-0134(19990701)36:1<135::aid-prot11>3.0.co;2-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lan, Nan, Hanxing Zhang, Chengcheng Hu, Wenzhao Wang, Ana M. Calvo, Steven D. Harris, She Chen e Shaojie Li. "Coordinated and Distinct Functions of Velvet Proteins in Fusarium verticillioides". Eukaryotic Cell 13, n.º 7 (2 de maio de 2014): 909–18. http://dx.doi.org/10.1128/ec.00022-14.

Texto completo da fonte
Resumo:
ABSTRACTVelvet-domain-containing proteins are broadly distributed within the fungal kingdom. In the corn pathogenFusarium verticillioides, previous studies showed that the velvet proteinF. verticillioidesVE1 (FvVE1) is critical for morphological development, colony hydrophobicity, toxin production, and pathogenicity. In this study, tandem affinity purification of FvVE1 revealed that FvVE1 can form a complex with the velvet proteinsF. verticillioidesVelB (FvVelB) and FvVelC. Phenotypic characterization of gene knockout mutants showed that, as in the case of FvVE1, FvVelB regulated conidial size, hyphal hydrophobicity, fumonisin production, and oxidant resistance, while FvVelC was dispensable for these biological processes. Comparative transcriptional analysis of eight genes involved in the ROS (reactive oxygen species) removal system revealed that both FvVE1 and FvVelB positively regulated the transcription of a catalase-encoding gene,F. verticillioidesCAT2(FvCAT2). Deletion ofFvCAT2resulted in reduced oxidant resistance, providing further explanation of the regulation of oxidant resistance by velvet proteins in the fungal kingdom.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Jin, Wenzhen, e Syoji T. akada. "1P103 Asymmetry in membrane protein sequence and structure : Glycine outside rule(Membrane proteins,Oral Presentations)". Seibutsu Butsuri 47, supplement (2007): S49. http://dx.doi.org/10.2142/biophys.47.s49_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

ISOBE, TAKASHI. "Amyloid proteins and amyloidosis.2 Amyloidosis of AA proteins and AL proteins." Nihon Naika Gakkai Zasshi 82, n.º 9 (1993): 1415–19. http://dx.doi.org/10.2169/naika.82.1415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Jeffery, Constance J. "Moonlighting proteins: old proteins learning new tricks". Trends in Genetics 19, n.º 8 (agosto de 2003): 415–17. http://dx.doi.org/10.1016/s0168-9525(03)00167-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Smith, Valerie J., e Elisabeth A. Dyrynda. "Antimicrobial proteins: From old proteins, new tricks". Molecular Immunology 68, n.º 2 (dezembro de 2015): 383–98. http://dx.doi.org/10.1016/j.molimm.2015.08.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

TSUGITA, AKIRA. "Ultramicroanalysis of proteins. 1. Purification of proteins." Kagaku To Seibutsu 26, n.º 5 (1988): 330–37. http://dx.doi.org/10.1271/kagakutoseibutsu1962.26.330.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Serdyuk, I. N. "Structured proteins and proteins with intrinsic disorder". Molecular Biology 41, n.º 2 (abril de 2007): 262–77. http://dx.doi.org/10.1134/s0026893307020082.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Xu, Shengnan, e Hai-Yu Hu. "Fluorogen-activating proteins: beyond classical fluorescent proteins". Acta Pharmaceutica Sinica B 8, n.º 3 (maio de 2018): 339–48. http://dx.doi.org/10.1016/j.apsb.2018.02.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Марьянович, Александр Тимурович, e Дмитрий Юрьевич Кормилец. "SARS CoV-2 PROTEINS AND HUMAN PROTEINS". Russian Biomedical Research 9, n.º 1 (22 de maio de 2024): 48–58. http://dx.doi.org/10.56871/rbr.2024.11.95.006.

Texto completo da fonte
Resumo:
Белки SARS CoV-2 представляют собой молекулы с массой от нескольких десятков до нескольких тысяч аминокислотных остатков. Существуют структурные и неструктурные белки. К первым относятся шиповый гликопротеин, или S-белок (S), малый мембранный оболочечный белок (E), мембранный белок (M) и нуклеопротеин или нуклеокапсид (N). Вторая группа состоит из 16 неструктурных белков (Nsp1-16, включая полипротеины репликазы RPP 1a и 1ab) и 10 вспомогательных факторов или белков открытой рамки считывания (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 и 14). Белки S, E и M, расположенные снаружи и в мембране вириона, участвуют в контакте вириона с клеткой и проникновении в нее. Другие белки участвуют в захвате внутриклеточных механизмов и их использовании в собственных интересах вируса. Большинство этих белков содержат многочисленные мотивы, гомологичные человеческим белкам, в том числе таким важным, как интерлейкин-7. Возможно, эта гомология является важным фактором, позволяющим «обмануть» иммунную систему на начальных стадиях инфекции и спровоцировать аутоиммунный ответ впоследствии. Гомология белков SARS CoV-2, с одной стороны, и белков вкусовых и обонятельных рецепторов — с другой, возможно, объясняетпричины нарушения восприятия вкусовых и обонятельных раздражителей, характерного для COVID-инфекции. SARS CoV-2 proteins are molecules with a mass of several tens to several thousand amino acid residues. There are structural and nonstructural proteins. The former include Spike glycoprotein (S), small membrane envelope protein (E), membrane protein (M), and nucleoprotein or nucleocapsid (N). The second group consists of 16 nonstructural proteins (Nsp1-16, including replicase&nbsp; polyproteins RPP 1a and 1ab) and 10 accessory factors or open reading frame proteins (ORF3a, 3b, 6, 7a, 7b, 8, 9b, 9c, 10 and 14). Proteins S, E and M, located outside and in the membrane of a virion, are involved in the contact of the virion with a cell and penetration into it. Other proteins are involved in the hijacking of intracellular mechanisms and their use in the virus’s own interests. Most of these proteins contain numerous motifs that are homologous to human proteins including such important ones as Interleukin-7. Perhaps this homology is an important factor in deceiving the immune system at the initial stages of infection and provoking an autoimmune response later. The homology of SARS CoV-2 proteins on the one hand and taste and olfactory receptor proteins on the other hand may possibly explain the causes of the impaired perception of taste and olfactory stimuli characteristic of COVID infection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Pillai, Harikrishna, Harikumar, S. Harikumar, S, Pramod kumar, R. Pramod kumar, R e Anuraj, K. S. Anuraj, K.S. "Dna Mimicry by Proteins". International Journal of Scientific Research 3, n.º 8 (1 de junho de 2012): 471–72. http://dx.doi.org/10.15373/22778179/august2014/150.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Littler, Dene R., Stephen J. Harrop, Sophia C. Goodchild, Juanita M. Phang, Andrew V. Mynott, Lele Jiang, Stella M. Valenzuela et al. "The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins?" FEBS Letters 584, n.º 10 (18 de janeiro de 2010): 2093–101. http://dx.doi.org/10.1016/j.febslet.2010.01.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Chakraborty, Asit Kumar. "Multi-Alignment Comparison of Coronavirus Non-Structural Proteins Nsp13- Nsp16 with Ribosomal Proteins and other DNA/RNA Modifying Enzymes Suggested their Roles in the Regulation of Host Protein Synthesis". International Journal of Clinical & Medical Informatics 3, n.º 1 (1 de junho de 2020): 7–19. http://dx.doi.org/10.46619/ijcmi.2020.1024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hung, Kuo-Wei, Chun-Chia Cheng, Yi-Chao Lin, Tsan-Hung Yu, Pei-Ju Fan, Chi-Fon Chang, Shih-Feng Tsai e Tai-Huang Huang. "2P089 NMR Studies of Virulence-associated Proteins and Small Conserved Hypothetical Proteins in Klebsiella Pneumoniae(30. Protein function (II),Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S318. http://dx.doi.org/10.2142/biophys.46.s318_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Jeffery, Constance J. "An introduction to protein moonlighting". Biochemical Society Transactions 42, n.º 6 (17 de novembro de 2014): 1679–83. http://dx.doi.org/10.1042/bst20140226.

Texto completo da fonte
Resumo:
Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Ma, Yingxuan, e Kim Johnson. "Arabinogalactan-proteins". WikiJournal of Science 4, n.º 1 (2021): 2. http://dx.doi.org/10.15347/wjs/2021.002.

Texto completo da fonte
Resumo:
Arabinogalactan-proteins (AGPs) are highly glycosylated proteins (glycoproteins) found in the cell walls of plants. AGPs account for only a small portion of the cell wall, usually no more than 1% of dry mass of the primary wall. AGPs are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily that represent a large and diverse group of glycosylated wall proteins. AGPs have attracted considerable attention due to their highly complex structures and potential roles in signalling. In addition, they have industrial and health applications due to their chemical/physical properties (water-holding, adhesion and emulsification). Glycosylation can account for more than 90% of the total mass. AGPs have been reported in a wide range of higher plants in seeds, roots, stems, leaves and inflorescences. They have also been reported in secretions of cell culture medium of root, leaf, endosperm and embryo tissues, and some exudate producing cell types such as stylar canal cells are capable of producing lavish amounts of AGPs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Löer, Birgit, e Michael Hoch. "Wech proteins". Cell Adhesion & Migration 2, n.º 3 (julho de 2008): 177–79. http://dx.doi.org/10.4161/cam.2.3.6579.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Yarotskyy, Viktor, e Robert T. Dirksen. "RGK proteins". Channels 8, n.º 4 (julho de 2014): 286–87. http://dx.doi.org/10.4161/chan.29982.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Flannery, Maura C. "Designing Proteins". American Biology Teacher 48, n.º 2 (1 de fevereiro de 1986): 112–14. http://dx.doi.org/10.2307/4448220.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Guo, Shiny Shengzhen, e Reinhard Fässler. "KANK proteins". Current Biology 32, n.º 19 (outubro de 2022): R990—R992. http://dx.doi.org/10.1016/j.cub.2022.08.073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

GÖKSEL, Şeyma, e Mustafa AKÇELİK. "Autotransporter Proteins". Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 13, n.º 3 (31 de dezembro de 2021): 49–57. http://dx.doi.org/10.29137/umagd.1037361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Danilova, Lubov A. "Glycated proteins". Pediatrician (St. Petersburg) 10, n.º 5 (28 de janeiro de 2020): 79–86. http://dx.doi.org/10.17816/ped10579-86.

Texto completo da fonte
Resumo:
Glycation is a biological reaction that occurs in all proteins. Thisreaction proceeds more slowly in healthy subjects and more rapidly in patients suffering from a hyperglycemia. Glycated proteins cannot fulfill their functions that could lead to metabolic disorders. The process of glycation leads to building of advanced glycation end-products (AGEs). Thestructureof AGEs has not been fully researched yet. Glycated proteins have diagnostic meaning in different health conditions and not only in patients with diabetes mellitus. Determination of glycated proteins level (hemoglobin and plasma proteins) in diagnostics of diabetes mellitus and the effectiveness of its treatment; measurements of glycated proteins could be used as a predictor of different illnesses and their complications. Glycated hemoglobin was researched in children with diabetes mellitus of different severity. It has been shown that the level of glycated proteins does not always correlate with blood sugar level. Results of glycated proteins measurements in patients with thyroid disorders shows that the glycation takes place not only in patients with diabetes mellitus, but also with other illnesses without hyperglycemia. Our research in patients with diabetes mellitus has shown that the measured level of glycated proteins and plasma proteins could be more significant in the course of disease than the level of blood sugar. Compensation of diabetes mellitus in children in regard of the blood sugar level does not always correlate with the level of glycated proteins. This assumption could lead to the conclusion that only the combination of measurements like blood sugar, glycated hemoglobin and glycated proteins could give a full picture of disease compensation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Mudgil, Yashwanti, e Alan M. Jones. "NDR proteins". Plant Signaling & Behavior 5, n.º 8 (agosto de 2010): 1017–18. http://dx.doi.org/10.4161/psb.5.8.12290.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Thomas, Clément, Céline Hoffmann, Sabrina Gatti e André Steinmetz. "LIM Proteins". Plant Signaling & Behavior 2, n.º 2 (março de 2007): 99–100. http://dx.doi.org/10.4161/psb.2.2.3614.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Roterman, Irena, Mateusz Banach e Leszek Konieczny. "Antifreeze proteins". Bioinformation 13, n.º 12 (31 de dezembro de 2017): 400–401. http://dx.doi.org/10.6026/97320630013400.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Glomset, John A., Michael H. Gelb e Christopher C. Farnsworth. "Geranylgeranylated proteins". Biochemical Society Transactions 20, n.º 2 (1 de maio de 1992): 479–84. http://dx.doi.org/10.1042/bst0200479.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

DECLERCQ, JEROEN, KAREN HENSEN, WIM J. VAN DE VEN e MARCELA CHAVEZ. "PLAG Proteins". Annals of the New York Academy of Sciences 1010, n.º 1 (dezembro de 2003): 264–65. http://dx.doi.org/10.1196/annals.1299.045.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Anderson, Alexandra, e Rachel McMullan. "G-proteins". Worm 1, n.º 4 (outubro de 2012): 196–201. http://dx.doi.org/10.4161/worm.20466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Demming, Anna. "Precision proteins". Nanotechnology 21, n.º 23 (17 de maio de 2010): 230201. http://dx.doi.org/10.1088/0957-4484/21/23/230201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

MACEK, F. "Microbial proteins." Kvasny Prumysl 32, n.º 11 (1 de novembro de 1986): 258–62. http://dx.doi.org/10.18832/kp1986072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Gehring, W. J., M. Affolter e T. Burglin. "Homeodomain Proteins". Annual Review of Biochemistry 63, n.º 1 (junho de 1994): 487–526. http://dx.doi.org/10.1146/annurev.bi.63.070194.002415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Willert, K., e R. Nusse. "Wnt Proteins". Cold Spring Harbor Perspectives in Biology 4, n.º 9 (1 de setembro de 2012): a007864. http://dx.doi.org/10.1101/cshperspect.a007864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Sansom, Clare. "Fluorescent proteins". Biochemist 35, n.º 5 (1 de outubro de 2013): 40–41. http://dx.doi.org/10.1042/bio03505040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Yost, C. Spencer. "G Proteins". Anesthesia & Analgesia 77, n.º 4 (outubro de 1993): 822???834. http://dx.doi.org/10.1213/00000539-199310000-00029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Vale, Ronald D. "Aaa Proteins". Journal of Cell Biology 150, n.º 1 (10 de julho de 2000): F13—F20. http://dx.doi.org/10.1083/jcb.150.1.f13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Fujiwara, Toru, Eiji Nambara, Kazutoshi Yamagishi, Derek B. Goto e Satoshi Naito. "Storage Proteins". Arabidopsis Book 1 (janeiro de 2002): e0020. http://dx.doi.org/10.1199/tab.0020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Bussell, Katrin. "Territorial proteins". Nature Reviews Molecular Cell Biology 5, n.º 10 (outubro de 2004): 774. http://dx.doi.org/10.1038/nrm1514.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Brummer, Tilman, Carsten Schmitz-Peiffer e Roger J. Daly. "Docking proteins". FEBS Journal 277, n.º 21 (30 de setembro de 2010): 4356–69. http://dx.doi.org/10.1111/j.1742-4658.2010.07865.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia