Literatura científica selecionada sobre o tema "Proteinopathy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Proteinopathy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Proteinopathy"
Taylor, J. Paul. "Multisystem proteinopathy: Table". Neurology 85, n.º 8 (24 de julho de 2015): 658–60. http://dx.doi.org/10.1212/wnl.0000000000001862.
Texto completo da fonteValderhaug, Vibeke D., Kristine Heiney, Ola Huse Ramstad, Geir Bråthen, Wei-Li Kuan, Stefano Nichele, Axel Sandvig e Ioanna Sandvig. "Early functional changes associated with alpha-synuclein proteinopathy in engineered human neural networks". American Journal of Physiology-Cell Physiology 320, n.º 6 (1 de junho de 2021): C1141—C1152. http://dx.doi.org/10.1152/ajpcell.00413.2020.
Texto completo da fonteParaskevas, George P., Mara Bourbouli, Ioannis Zaganas e Elisabeth Kapaki. "The emerging TDP-43 proteinopathy". Neuroimmunology and Neuroinflammation 5, n.º 5 (10 de maio de 2018): 17. http://dx.doi.org/10.20517/2347-8659.2018.18.
Texto completo da fonteBhuiyan, Md Shenuarin, J. Scott Pattison, Hanna Osinska, Jeanne James, James Gulick, Patrick M. McLendon, Joseph A. Hill, Junichi Sadoshima e Jeffrey Robbins. "Enhanced autophagy ameliorates cardiac proteinopathy". Journal of Clinical Investigation 123, n.º 12 (1 de novembro de 2013): 5284–97. http://dx.doi.org/10.1172/jci70877.
Texto completo da fonteTaylor, Laura M., Pamela J. McMillan, Brian C. Kraemer e Nicole F. Liachko. "Tau tubulin kinases in proteinopathy". FEBS Journal 286, n.º 13 (22 de maio de 2019): 2434–46. http://dx.doi.org/10.1111/febs.14866.
Texto completo da fonteChen, Han-Jou, e Jacqueline C. Mitchell. "Mechanisms of TDP-43 Proteinopathy Onset and Propagation". International Journal of Molecular Sciences 22, n.º 11 (2 de junho de 2021): 6004. http://dx.doi.org/10.3390/ijms22116004.
Texto completo da fonteDeng, Jianwen, Peng Wang, Xiaoping Chen, Haipeng Cheng, Jianghong Liu, Kazuo Fushimi, Li Zhu e Jane Y. Wu. "FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models". Proceedings of the National Academy of Sciences 115, n.º 41 (24 de setembro de 2018): E9678—E9686. http://dx.doi.org/10.1073/pnas.1806655115.
Texto completo da fonteStepenko, Yulia V., Veronika S. Shmigerova, Darya A. Kostina, Olesya V. Shcheblykina, Nina I. Zhernakova, Alexey V. Solin, Natalia V. Koroleva, Vera A. Markovskaya, Olga V. Dudnikova e Anton A. Bolgov. "Study of the neuroprotective properties of the heteroreceptor EPOR/CD131 agonist of peptide structure in tau-proteinopathy modeling". Research Results in Pharmacology 10, n.º 2 (17 de junho de 2024): 41–47. http://dx.doi.org/10.18413/rrpharmacology.10.492.
Texto completo da fonteZheng, Qingwen, Huabo Su, Mark J. Ranek e Xuejun Wang. "Autophagy and p62 in Cardiac Proteinopathy". Circulation Research 109, n.º 3 (22 de julho de 2011): 296–308. http://dx.doi.org/10.1161/circresaha.111.244707.
Texto completo da fonteHasegawa, Masato, Tetsuaki Arai, Takashi Nonaka, Fuyuki Kametani, Mari Yoshida, Kenji Ikeda e Haruhiko Akiyama. "Proteomic analyses of TDP-43 proteinopathy". Neuroscience Research 68 (janeiro de 2010): e35. http://dx.doi.org/10.1016/j.neures.2010.07.399.
Texto completo da fonteTeses / dissertações sobre o assunto "Proteinopathy"
Armstrong, Bryson Walter. "The role of karyopherin-alpha in the pathogenesis of TDP-43 proteinopathy". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45074.
Texto completo da fonteKornfield, James M. "TDP-43 proteinopathy: tracing the roots of a newly classified neurodegenerative disease". Thesis, Boston University, 2013. https://hdl.handle.net/2144/21197.
Texto completo da fonteTAR DNA Binding Protein-43 (TDP-43) proteinopathy is a disease pathology that underlies a broad field of neurodegenerative disorders. Most prominently, TDP-43 aggregates are the hallmark of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). The implication of TDP-43 in ALS, in particular, has helped initiate a cascade of research to determine the properties of the previously obscure protein. From these studies, it is now known that TDP-43 is a DNA and RNA binding protein, important for the splicing and regulation of many transcripts. In the disease state, TDP-43 is modified in a way that fuels its accumulation into cytoplasmic aggregates called inclusions. This paper will delineate the current understanding of the mechanisms behind TDP-43 proteinopathy and the resultant clinical conditions. The body of evidence firmly supports a clinical spectrum of TDP-43 proteinopathy that ranges between pure motor neuron disease (MND) and pure frontotemporal dementia (FTD). It also appears that the root cause of neurodegeneration in these disorders comes about through a combination of a gain of toxic function and a loss of normal TDP-43. Continued research into the molecular processes leading to the capitulation of TDP-43 holds great promise for the development of new drug targets to help treat the spectrum of TDP-43 proteinopathy.
2031-01-01
PISCIOTTANI, ALESSANDRA. "Axonal mRNA dysregulation in a cellular model of TDP-43 proteinopathy: a functional and -omic analysis". Doctoral thesis, Università Vita-Salute San Raffaele, 2022. http://hdl.handle.net/20.500.11768/128351.
Texto completo da fonteLa Sclerosi Laterale Amiotrofica (SLA) è una malattia neurodegenerativa incurabile che colpisce principalmente il primo e il secondo motoneurone. Solo il 10% dei casi sono familiari, mentre la maggior parte sono sporadici. TDP-43, codificata dal gene TARDBP, è una proteina legante l’RNA che ha un ruolo regolatorio essenziale nel metabolismo dell’RNA, dalla trascrizione e splicing al trasporto e traduzione. Mentre le mutazioni di TARDBP rappresentano solo il 2-5% dei casi di SLA, il 97% dei pazienti, sia sporadici che familiari, mostrano una deplezione nucleare di TDP-43 così come il suo accumulo citoplasmatico e la formazione di aggregati, noti come TDP-43 proteinopatia. Diverse evidenze suggeriscono che la SLA sia una assonopatia distale, in cui la degenerazione assonale precede la morte del motoneurone. Poichè la traduzione assonale è essenziale per lo sviluppo, il mantenimento e il funzionamento di questo compartimento subcellulare, noi ipotizziamo che livelli alterati di mRNA dovuti alla deregolazione di TDP-43 può alterare la biologia assonale nei motoneuroni, un tipo cellulare il cui l’assone rappresenta il 99% del volume totale della cellula. In questo progetto abbiamo caratterizzato colture altamente arricchite di motoneuroni corticali murini overesprimenti TDP-43 wt (wtTDP) o con una mutazione familiare, A315T (mutTDP). Entrambi i modelli presentano un accumulo citoplasmatico di aggregati positivi per TDP-43, accompagnato da una ridotta traduzione assonale degli mRNA, aumentato stress ossidativo, alterata esocitosi e cambiamenti nell’omeostati del calcio. Mediante l’uso di camerette microfluidiche, assoni e corpi cellulari wt- e mutTDP sono stati fisicamente separati, permettendo un’analisi imparziale di RNA-seq di entrambi i compartimenti subcellulari. Mediante un protocollo con gradiente di saccarosio sviluppato dal laboratorio di Gabriella Viero, gli mRNA polisomali e sub-polisomali sono stati analizzati separatamente e comparati ai neuroni di controllo. Mi sono focalizzata sui cambiamenti del translatoma e trascrittoma relativi alle alterazioni funzionali osservati dal nostro gruppo. Sia gli assoni wtTDP che mutTDP presentano una evidente deregolazione dei trascritti polisomali coinvolti nella traduzione degli mRNA, nella risposta allo stress ossidativo e nella funzione presinaptica, sottolineando l’importanza della traduzione assonale nei processi chiave funzionali e omeostatici. Infine, le registrazioni di elettrofisiologia dei neuroni wtTDP e mutTDP hanno mostrato un aumento significativo delle sinapsi elettriche. Oltre a rappresentare potenzialmente un meccanismo di compensazione della ridotta connettività dei neuroni wtTDP e TDP-43, le gap junctions e gli emicanali, potrebbero contribuire alla diffusione di piccole molecole tossiche e una diffusione maladattiva del danno neuronale a partire dalla sua origine focale.
Ury-Thiery, Vicky. "Agrégation in vitro de la protéine amyloïde Tau et étude de son impact sur des modèles membranaires par différentes méthodes biophysiques". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0440.
Texto completo da fonteNeurodegenerative diseases, such as Alzheimer’s and Parkinson’s, affect cognitive and motor functions. They are characterized by a progressive loss of neurons, with no possibility of regeneration. With an aging population, these predominantly age-related diseases represent a major societal challenge. The lack of early diagnosis, effective treatments, and understanding of the underlying mechanisms highlights the need for further investigation. Patients suffering from these diseases exhibit abnormal protein accumulations in the form of insoluble aggregates, within or near brain cells. Although each proteinopathy presents specific aggregates, they share common features, notably their amyloid structure. These amyloids, formed by the misfolded protein monomers’ self-assembly through stacking, adopt a characteristic cross-β structure. Several pathogenic amyloid proteins have been identified and are associated with various neurodegenerative diseases. The Tau protein, implicated in Alzheimer’s disease and more broadly in a group of dementias known as tauopathies, is primarily located in neurons, where it stabilizes microtubules, structural elements of the cellular cytoskeleton. However, under pathological conditions, Tau dissociates from the microtubules, becomes hyperphosphorylated, and forms fibrillar amyloid aggregates. The exact mechanisms of this aggregation remain poorly understood. The study of Tau aggregation relies on the in vitro production of amyloid fibers. Due to its high solubility associated with its positive charge, fiber formation requires the addition of polyanionic molecules, called cofactors, such as heparin (a polysaccharide), RNA, or lipids. However, uncertainties remain regarding the exact role of these cofactors: do they simply catalyze aggregation, or are they integrated into the fiber structure? If so, what impact does this have on the morphology of the aggregates? Tau's ability to aggregate in the presence of lipids raises questions about its behavior in relation to the different membranes of neurons. Tau’s interaction with plasma membranes has been demonstrated and may play a role in both physiological and pathological processes. Does Tau, in the presence of anionic lipids, compromise membrane integrity? What about non-anionic lipids? To address these questions, this thesis project combines several biophysical approaches: attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), transmission electron microscopy (TEM), and plasmon waveguide resonance (PWR). The study is structured around two main axes: (i) characterizing Tau aggregation in the presence of different anionic cofactors (heparin, RNA, phospholipids) and studying their impact on fiber morphology; (ii) assessing the effect of Tau's interaction with lipid membranes of varying compositions on membrane integrity. The results of this thesis provide new insights into the pathogenic mechanisms of Tau and may contribute to a better understanding of tauopathies as well as the development of therapeutic strategies
Capítulos de livros sobre o assunto "Proteinopathy"
Thal, Dietmar R., Melissa E. Murray e Dennis W. Dickson. "Alzheimer's disease (Aβ and Tau proteinopathy)". In Greenfield's Neuropathology 10e Set, 1012–41. 10a ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003389699-32.
Texto completo da fonteJosephs, Keith A. "Clinical Aspects of TDP‐43 Proteinopathy, Neurofilament Inclusion Body Disease and Dementias Lacking Distinctive Proteinopathy". In Dementias, 377–82. Elsevier, 2008. http://dx.doi.org/10.1016/s0072-9752(07)01235-3.
Texto completo da fonteBharathi, Vidhya, Amandeep Girdhar e Basant K. Patel. "TDP-43 proteinopathy mechanisms from non-mammalian model systems". In TDP-43 and Neurodegeneration, 153–81. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-820066-7.00002-3.
Texto completo da fonteEspay, Alberto J., Karl Herrup e Timothy Daly. "Finding the falsification threshold of the toxic proteinopathy hypothesis in neurodegeneration". In Precision Medicine in Neurodegenerative Disorders, Part I, 143–54. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-85538-9.00008-0.
Texto completo da fonteKritikos, Minos, Samuel E. Gandy, Jaymie R. Meliker, Benjamin J. Luft e Sean A. P. Clouston. "Acute versus Chronic Exposures to Inhaled Particulate Matter and Neurocognitive Dysfunction: Pathways to Alzheimer’s Disease or a Related Dementia". In Advances in Alzheimer’s Disease. IOS Press, 2021. http://dx.doi.org/10.3233/aiad210028.
Texto completo da fonteGupta, Nimisha, e Dr Farheen Waziri. "PROTEINOPATHIES: A REVIEW ON CURRENT SCENARIO AND THERAPEUTIC INTERVENTIONS". In Futuristic Trends in Biotechnology Volume 3 Book 14, 144–60. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bbbt14p2ch3.
Texto completo da fonteDiederich, Nico J., e Christopher G. Goetz. "Parkinson’s Disease". In The Evolutionary Roots of Human Brain Diseases, editado por Nico J. Diederich, Martin Brüne, Katrin Amunts e Christopher G. Goetz, 205–27. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197676592.003.0010.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Proteinopathy"
Sarah, Fullam, Power Alan, Stack Jessica, Bermingham Niamh, McNamara Brian e Merwick Aine. "VCP multisystem proteinopathy: a ubiquitous culprit of neuronal degeneration". In Association of British Neurologists: Annual Meeting Abstracts 2023. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jnnp-2023-abn.229.
Texto completo da fonteGwin, M. S., S. B. Voth, S. Subedi Paudel, N. Onanyan, A. Darby, C. M. Francis e T. Stevens. "Essential Role for Gamma Secretase Activating Protein (GSAP) in Infection-Elicited Endothelial Proteinopathy". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5275.
Texto completo da fonteRoos, Raymond P., Katsuhisa Masaki, Yoshifumi Sonobe e Ghanashyam Ghadge. "TDP-43 PROTEINOPATHY IN THE PATHOGENESIS OF THEILER'S MURINE ENCEPHALOMYELITIS VIRUS INDUCED DISEASES". In Viruses: Discovering Big in Small. TORUS PRESS, 2019. http://dx.doi.org/10.30826/viruses-2019-10.
Texto completo da fonteAbakumets, V. Y., e K. Ya Bulanava. "THE INFLUENCE OF INSULIN FIBRILLATION". In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-7-10.
Texto completo da fonteLysikova, Ekaterina. "MOLECULAR MECHANISMS OF SUPPRESSION OF THE PROGRESSION OF FUS PROTEINOPATHY IN THE NERVOUS SYSTEM OF TRANSGENIC MICE". In XVII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2209.sudak.ns2021-17/237-238.
Texto completo da fonteGattas, Susannah, Mark Davis, Merrilee Needham, Emily Watson, Robert Henderson e Pamela McCombe. "3207 Case series of multisystem proteinopathy due to valosin-containing protein (VCP) gene variants: an inconsistent phenotype". In ANZAN Annual Scientific Meeting 2024 Abstracts, A55.2—A55. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/bmjno-2024-anzan.156.
Texto completo da fonteHalber, Matthew, Sabrina Bulancea e Simona Treidler. "Clinical and Electrophysiological Presentation of a Patient with Multisystem Proteinopathy Associated with Valosin-Containing Protein Mutation (P5-8.005)". In 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000202694.
Texto completo da fonteStork, Larissa Rosa, Lucca Stephani Ribeiro, Izabella Savergnini Deprá, Luísa D’Ávila Camargo e Maria Angélica Santos Novaes. "Tau protein and its role in Alzheimer’s disease physiopathology: a literature review". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.132.
Texto completo da fonteBarbosa, Mateus Gonçalves de Sena, Ghaspar Gomes de Oliveira Alves Francisco, Rafaela Luiza Vilela de Souza, João Marcos Alcântara de Souza e Nicollas Nunes Rabelo. "Chronic traumatic encephalopathy in military and sportsists: a factual problem?: a systematic review". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.324.
Texto completo da fontePedroza, Lucas Aleixo Leal, Francisco Agenor de Oliveira Neto, Antonio Marinho da Silva Neto,, Carlos Henrique Madeiros Castelletti e Priscila Gubert. "ANÁLISE IN SILICO DO POTENCIAL DE AGREGAÇÃO DE RESÍDUOS DA TDP 43 HUMANA". In XXVII Semana de Biomedicina Inovação e Ciência. Editora IME, 2021. http://dx.doi.org/10.51161/9786588884119/17.
Texto completo da fonte