Siga este link para ver outros tipos de publicações sobre o tema: Protein-molecule interactions.

Artigos de revistas sobre o tema "Protein-molecule interactions"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Protein-molecule interactions".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kuusk, Ave, Helen Boyd, Hongming Chen e Christian Ottmann. "Small-molecule modulation of p53 protein-protein interactions". Biological Chemistry 401, n.º 8 (28 de julho de 2020): 921–31. http://dx.doi.org/10.1515/hsz-2019-0405.

Texto completo da fonte
Resumo:
AbstractSmall-molecule modulation of protein-protein interactions (PPIs) is a very promising but also challenging area in drug discovery. The tumor suppressor protein p53 is one of the most frequently altered proteins in human cancers, making it an attractive target in oncology. 14-3-3 proteins have been shown to bind to and positively regulate p53 activity by protecting it from MDM2-dependent degradation or activating its DNA binding affinity. PPIs can be modulated by inhibiting or stabilizing specific interactions by small molecules. Whereas inhibition has been widely explored by the pharmaceutical industry and academia, the opposite strategy of stabilizing PPIs still remains relatively underexploited. This is rather interesting considering the number of natural compounds like rapamycin, forskolin and fusicoccin that exert their activity by stabilizing specific PPIs. In this review, we give an overview of 14-3-3 interactions with p53, explain isoform specific stabilization of the tumor suppressor protein, explore the approach of stabilizing the 14-3-3σ-p53 complex and summarize some promising small molecules inhibiting the p53-MDM2 protein-protein interaction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ottmann, Christian. "Small-molecule modulation of protein–protein interactions". Drug Discovery Today: Technologies 10, n.º 4 (dezembro de 2013): e499-e500. http://dx.doi.org/10.1016/j.ddtec.2013.08.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pollock, Julie A., Courtney L. Labrecque, Cassidy N. Hilton, Justin Airas, Alexis Blake, Kristen J. Rubenstein e Carol A. Parish. "Small Molecule Modulation of MEMO1 Protein-Protein Interactions". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1031. http://dx.doi.org/10.1210/jendso/bvab048.2110.

Texto completo da fonte
Resumo:
Abstract MEMO1 (mediator of ErbB2-driven cell motility) is upregulated in breast tumors and has been correlated with poor prognosis in patients. As a scaffolding protein that binds to phosphorylated-tyrosine residues on receptors such as estrogen receptor and ErbB2, MEMO1 levels can influence phosphorylation cascades. Using our previously developed fluorescence polarization assay, we have identified small molecules with the ability to disrupt the interactions of MEMO1. We have performed limited structure-activity-relationship studies and computational analyses to investigate the molecular requirements for MEMO1 inhibition. The most promising compounds exhibit slowed migration of breast cancer cell lines (T47D and SKBR3) in a wound-healing assay emulating results obtained from the knockdown of MEMO1 protein. To our knowledge, these are the first small molecules targeting the MEMO1 protein-protein interface and therefore, will be invaluable tools for the investigation of the role of the MEMO1 in breast cancer and other biological contexts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Guo, Z. "Designing Small-Molecule Switches for Protein-Protein Interactions". Science 288, n.º 5473 (16 de junho de 2000): 2042–45. http://dx.doi.org/10.1126/science.288.5473.2042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

SAHA, MIRABEAU, e TIMOLÉON C. KOFANÉ. "NONLINEAR DYNAMICS OF LONG-RANGE PROTEIN-HELICOIDAL DNA INTERACTIONS". International Journal of Modern Physics B 26, n.º 19 (16 de julho de 2012): 1250101. http://dx.doi.org/10.1142/s0217979212501019.

Texto completo da fonte
Resumo:
The effects of long-range interactions between peptides on the protein–DNA dynamics in the long-wave limit are studied. The investigation, done at the physiological temperature, is based on a coupled spin system of DNA molecule which includes the helicoidal geometry of DNA molecule and the Kac–Baker long-range interaction between the peptides of the protein molecule. By using the Holstein–Primakoff bosonic representation of the spin operators, we show that the original discrete equations for the protein–DNA interaction dynamics can be reduced to the nonlinear Schrödinger (NLS) equation of which the dispersive and the nonlinear coefficients depend among other things on the protein long-range interaction parameter and on the helicoidal coupling coefficient. Furthermore, we find that the amplitude and the width of the resulting breather solution, in the form of the bubble moving along the DNA molecule, are strongly influenced by the long-range and helicoidal interactions. This result shows a relevant length scale for real protein–DNA interaction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

D’Abramo, C. M. "Small Molecule Inhibitors of Human Papillomavirus Protein - Protein Interactions". Open Virology Journal 5, n.º 1 (4 de julho de 2011): 80–95. http://dx.doi.org/10.2174/1874357901105010080.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Linhares, Brian M., Jolanta Grembecka e Tomasz Cierpicki. "Targeting epigenetic protein–protein interactions with small-molecule inhibitors". Future Medicinal Chemistry 12, n.º 14 (julho de 2020): 1305–26. http://dx.doi.org/10.4155/fmc-2020-0082.

Texto completo da fonte
Resumo:
Epigenetic protein–protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Li, Xiyan, Xin Wang e Michael Snyder. "Systematic investigation of protein-small molecule interactions". IUBMB Life 65, n.º 1 (7 de dezembro de 2012): 2–8. http://dx.doi.org/10.1002/iub.1111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Nemashkalo, A., M. E. Phipps, S. P. Hennelly e P. M. Goodwin. "Real-time, single-molecule observation of biomolecular interactions inside nanophotonic zero mode waveguides". Nanotechnology 33, n.º 16 (25 de janeiro de 2022): 165101. http://dx.doi.org/10.1088/1361-6528/ac467c.

Texto completo da fonte
Resumo:
Abstract Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosciences RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real-time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model–transcription of structured ribosomal RNA from E. coli and interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Luo, Fang, Gege Qin, Tie Xia e Xiaohong Fang. "Single-Molecule Imaging of Protein Interactions and Dynamics". Annual Review of Analytical Chemistry 13, n.º 1 (12 de junho de 2020): 337–61. http://dx.doi.org/10.1146/annurev-anchem-091619-094308.

Texto completo da fonte
Resumo:
Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Balci, Hamza, Sujay Ray, Jagat Budhathoki e Parastoo Maleki. "Single Molecule Studies on G-Quadruplex, Protein, and Small Molecule Interactions". Biophysical Journal 112, n.º 3 (fevereiro de 2017): 170a. http://dx.doi.org/10.1016/j.bpj.2016.11.940.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Song, Yun, e Peter Buchwald. "TNF Superfamily Protein-Protein Interactions: Feasibility of Small- Molecule Modulation". Current Drug Targets 16, n.º 4 (6 de abril de 2015): 393–408. http://dx.doi.org/10.2174/1389450116666150223115628.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

de Vink, Pim J., Sebastian A. Andrei, Yusuke Higuchi, Christian Ottmann, Lech-Gustav Milroy e Luc Brunsveld. "Cooperativity basis for small-molecule stabilization of protein–protein interactions". Chemical Science 10, n.º 10 (2019): 2869–74. http://dx.doi.org/10.1039/c8sc05242e.

Texto completo da fonte
Resumo:
A cooperativity framework to describe and interpret small-molecule stabilization of protein–protein interactions (PPI) is presented, which allows elucidating structure–activity relationships regarding cooperativity and intrinsic affinity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lee, Hong-Won, Ji Young Ryu, Janghyun Yoo, Byungsan Choi, Kipom Kim e Tae-Young Yoon. "Real-time single-molecule coimmunoprecipitation of weak protein-protein interactions". Nature Protocols 8, n.º 10 (26 de setembro de 2013): 2045–60. http://dx.doi.org/10.1038/nprot.2013.116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Aeluri, Madhu, Srinivas Chamakuri, Bhanudas Dasari, Shiva Krishna Reddy Guduru, Ravikumar Jimmidi, Srinivas Jogula e Prabhat Arya. "Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies". Chemical Reviews 114, n.º 9 (27 de março de 2014): 4640–94. http://dx.doi.org/10.1021/cr4004049.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ottmann, Christian. "Small-molecule modulators of 14-3-3 protein–protein interactions". Bioorganic & Medicinal Chemistry 21, n.º 14 (julho de 2013): 4058–62. http://dx.doi.org/10.1016/j.bmc.2012.11.028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Fry, David C. "Protein–protein interactions as targets for small molecule drug discovery". Biopolymers 84, n.º 6 (2006): 535–52. http://dx.doi.org/10.1002/bip.20608.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Vargas, Carolyn, Gerald Radziwill, Gerd Krause, Anne Diehl, Sandro Keller, Nestor Kamdem, Constantin Czekelius et al. "Small-Molecule Inhibitors of AF6 PDZ-Mediated Protein-Protein Interactions". ChemMedChem 9, n.º 7 (25 de março de 2014): 1458–62. http://dx.doi.org/10.1002/cmdc.201300553.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Jain, Ankur, Ruijie Liu, Yang K. Xiang e Taekjip Ha. "Single-molecule pull-down for studying protein interactions". Nature Protocols 7, n.º 3 (9 de fevereiro de 2012): 445–52. http://dx.doi.org/10.1038/nprot.2011.452.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Sierecki, E., N. Giles, M. Polinkovsky, M. Moustaqil, K. Alexandrov e Y. Gambin. "A cell-free approach to accelerate the study of protein–protein interactions in vitro". Interface Focus 3, n.º 5 (6 de outubro de 2013): 20130018. http://dx.doi.org/10.1098/rsfs.2013.0018.

Texto completo da fonte
Resumo:
Protein–protein interactions are highly desirable targets in drug discovery, yet only a fraction of drugs act as binding inhibitors. Here, we review the different technologies used to find and validate protein–protein interactions. We then discuss how the novel combination of cell-free protein expression, AlphaScreen and single-molecule fluorescence spectroscopy can be used to rapidly map protein interaction networks, determine the architecture of protein complexes, and find new targets for drug discovery.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Jeong, Min Gyu, Kai Zhou, Soyeon Park, HyeongJeon An, Yonghoon Kwon, Yeonho Chang, Do-Hyeon Kim e Sung Ho Ryu. "Analysis of transient membrane protein interactions by single-molecule diffusional mobility shift assay". Experimental & Molecular Medicine 53, n.º 2 (fevereiro de 2021): 291–99. http://dx.doi.org/10.1038/s12276-021-00567-1.

Texto completo da fonte
Resumo:
AbstractVarious repertoires of membrane protein interactions determine cellular responses to diverse environments around cells dynamically in space and time. Current assays, however, have limitations in unraveling these interactions in the physiological states in a living cell due to the lack of capability to probe the transient nature of these interactions on the crowded membrane. Here, we present a simple and robust assay that enables the investigation of transient protein interactions in living cells by using the single-molecule diffusional mobility shift assay (smDIMSA). Utilizing smDIMSA, we uncovered the interaction profile of EGFR with various membrane proteins and demonstrated the promiscuity of these interactions depending on the cancer cell line. The transient interaction profile obtained by smDIMSA will provide critical information to comprehend the crosstalk among various receptors on the plasma membrane.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Berwanger, Anja, Susanne Eyrisch, Inge Schuster, Volkhard Helms e Rita Bernhardt. "Polyamines: Naturally occurring small molecule modulators of electrostatic protein–protein interactions". Journal of Inorganic Biochemistry 104, n.º 2 (fevereiro de 2010): 118–25. http://dx.doi.org/10.1016/j.jinorgbio.2009.10.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Arkin, Michelle R., e James A. Wells. "Small-molecule inhibitors of protein–protein interactions: progressing towards the dream". Nature Reviews Drug Discovery 3, n.º 4 (abril de 2004): 301–17. http://dx.doi.org/10.1038/nrd1343.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Taguchi, Hideki, Taro Ueno, Hisashi Tadakuma, Masasuke Yoshida e Takashi Funatsu. "Single-molecule observation of protein–protein interactions in the chaperonin system". Nature Biotechnology 19, n.º 9 (setembro de 2001): 861–65. http://dx.doi.org/10.1038/nbt0901-861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Arkin, Michelle R., Yinyan Tang e James A. Wells. "Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality". Chemistry & Biology 21, n.º 9 (setembro de 2014): 1102–14. http://dx.doi.org/10.1016/j.chembiol.2014.09.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Vera, Andrés M., e Mariano Carrión-Vázquez. "Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy". Angewandte Chemie International Edition 55, n.º 45 (13 de outubro de 2016): 13970–73. http://dx.doi.org/10.1002/anie.201605284.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Vera, Andrés M., e Mariano Carrión-Vázquez. "Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy". Angewandte Chemie 128, n.º 45 (13 de outubro de 2016): 14176–79. http://dx.doi.org/10.1002/ange.201605284.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Hashimoto, Chie, e Jutta Eichler. "Turning Peptide Ligands into Small-Molecule Inhibitors of Protein-Protein Interactions". ChemBioChem 16, n.º 13 (23 de julho de 2015): 1855–56. http://dx.doi.org/10.1002/cbic.201500298.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bai, Bing, Rongfeng Zou, H. C. Stephen Chan, Hongchun Li e Shuguang Yuan. "MolADI: A Web Server for Automatic Analysis of Protein–Small Molecule Dynamic Interactions". Molecules 26, n.º 15 (30 de julho de 2021): 4625. http://dx.doi.org/10.3390/molecules26154625.

Texto completo da fonte
Resumo:
Protein–ligand interaction analysis is important for drug discovery and rational protein design. The existing online tools adopt only a single conformation of the complex structure for calculating and displaying the interactions, whereas both protein residues and ligand molecules are flexible to some extent. The interactions evolved with time in the trajectories are of greater interest. MolADI is a user-friendly online tool which analyzes the protein–ligand interactions in detail for either a single structure or a trajectory. Interactions can be viewed easily with both 2D graphs and 3D representations. MolADI is available as a web application.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

C. Fry, David. "Small-Molecule Inhibitors of Protein-Protein Interactions: How to Mimic a Protein Partner". Current Pharmaceutical Design 18, n.º 30 (23 de agosto de 2012): 4679–84. http://dx.doi.org/10.2174/138161212802651634.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ferreira de Freitas, Renato, e Matthieu Schapira. "A systematic analysis of atomic protein–ligand interactions in the PDB". MedChemComm 8, n.º 10 (2017): 1970–81. http://dx.doi.org/10.1039/c7md00381a.

Texto completo da fonte
Resumo:
We compiled a list of 11 016 unique structures of small-molecule ligands bound to proteins representing 750 873 protein–ligand atomic interactions, and analyzed the frequency, geometry and the impact of each interaction type. The most frequent ligand–protein atom pairs can be clustered into seven interaction types.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Wilson, Hugh, Miles Lee e Quan Wang. "Probing DNA-protein interactions using single-molecule diffusivity contrast". Biophysical Reports 1, n.º 1 (setembro de 2021): 100009. http://dx.doi.org/10.1016/j.bpr.2021.100009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Liu, W., Vedrana Montana, Jihong Bai, Edwin R. Chapman, U. Mohideen e Vladimir Parpura. "Single Molecule Mechanical Probing of the SNARE Protein Interactions". Biophysical Journal 91, n.º 2 (julho de 2006): 744–58. http://dx.doi.org/10.1529/biophysj.105.073312.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Shapshak, Paul. "Molecule of the month: Synaptic plasticity – Protein miRNA interactions". Bioinformation 8, n.º 21 (31 de outubro de 2012): 1003–4. http://dx.doi.org/10.6026/97320630081003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Huang, Da, Aaron D. Robison, Yiquan Liu e Paul S. Cremer. "Monitoring protein–small molecule interactions by local pH modulation". Biosensors and Bioelectronics 38, n.º 1 (outubro de 2012): 74–78. http://dx.doi.org/10.1016/j.bios.2012.05.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Feingold, Mario. "Single-molecule studies of DNA and DNA–protein interactions". Physica E: Low-dimensional Systems and Nanostructures 9, n.º 3 (março de 2001): 616–20. http://dx.doi.org/10.1016/s1386-9477(00)00270-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hilario, Jovencio, e Stephen C. Kowalczykowski. "Visualizing protein–DNA interactions at the single-molecule level". Current Opinion in Chemical Biology 14, n.º 1 (fevereiro de 2010): 15–22. http://dx.doi.org/10.1016/j.cbpa.2009.10.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Froberg, James. "Monitoring Protein-Ligands Interactions by Single-Molecule Lysozyme Nanocircuits". Biophysical Journal 114, n.º 3 (fevereiro de 2018): 419a. http://dx.doi.org/10.1016/j.bpj.2017.11.2321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

McFedries, Amanda, Adam Schwaid e Alan Saghatelian. "Methods for the Elucidation of Protein-Small Molecule Interactions". Chemistry & Biology 20, n.º 5 (maio de 2013): 667–73. http://dx.doi.org/10.1016/j.chembiol.2013.04.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Matin, Tina R., Krishna P. Sigdel, Linda L. Randall e Gavin M. King. "Probing Protein-Lipid Interactions at the Single Molecule Level". Biophysical Journal 108, n.º 2 (janeiro de 2015): 559a. http://dx.doi.org/10.1016/j.bpj.2014.11.3066.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hillger, Frank, Dominik Hänni, Daniel Nettels, Sonja Geister, Michelle Grandin, Marcus Textor e Benjamin Schuler. "Probing Protein-Chaperone Interactions with Single-Molecule Fluorescence Spectroscopy". Angewandte Chemie International Edition 47, n.º 33 (4 de agosto de 2008): 6184–88. http://dx.doi.org/10.1002/anie.200800298.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Robison, Aaron D., e Ilya J. Finkelstein. "High-throughput single-molecule studies of protein-DNA interactions". FEBS Letters 588, n.º 19 (21 de maio de 2014): 3539–46. http://dx.doi.org/10.1016/j.febslet.2014.05.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Guan, Yan, Xiaonan Shan, Fenni Zhang, Shaopeng Wang, Hong-Yuan Chen e Nongjian Tao. "Kinetics of small molecule interactions with membrane proteins in single cells measured with mechanical amplification". Science Advances 1, n.º 9 (outubro de 2015): e1500633. http://dx.doi.org/10.1126/sciadv.1500633.

Texto completo da fonte
Resumo:
Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring of the deformation with subnanometer resolution allows quantitative analysis of small molecule–membrane protein interaction kinetics in single cells. This new strategy provides mechanical amplification of small binding signals, making it possible to detect small molecule interactions with membrane proteins. This capability, together with spatial resolution, also allows the study of the heterogeneous nature of cells by analyzing the interaction kinetics variability between different cells and between different regions of a single cell.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Zhang, Changsheng, e Luhua Lai. "Towards structure-based protein drug design". Biochemical Society Transactions 39, n.º 5 (21 de setembro de 2011): 1382–86. http://dx.doi.org/10.1042/bst0391382.

Texto completo da fonte
Resumo:
Structure-based drug design for chemical molecules has been widely used in drug discovery in the last 30 years. Many successful applications have been reported, especially in the field of virtual screening based on molecular docking. Recently, there has been much progress in fragment-based as well as de novo drug discovery. As many protein–protein interactions can be used as key targets for drug design, one of the solutions is to design protein drugs based directly on the protein complexes or the target structure. Compared with protein–ligand interactions, protein–protein interactions are more complicated and present more challenges for design. Over the last decade, both sampling efficiency and scoring accuracy of protein–protein docking have increased significantly. We have developed several strategies for structure-based protein drug design. A grafting strategy for key interaction residues has been developed and successfully applied in designing erythropoietin receptor-binding proteins. Similarly to small-molecule design, we also tested de novo protein-binder design and a virtual screen of protein binders using protein–protein docking calculations. In comparison with the development of structure-based small-molecule drug design, we believe that structure-based protein drug design has come of age.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Dyrda-Terniuk, Tetiana, Mateusz Sugajski, Oleksandra Pryshchepa, Joanna Śliwiak, Magdalena Buszewska-Forajta, Paweł Pomastowski e Bogusław Buszewski. "The Study of Protein–Cyclitol Interactions". International Journal of Molecular Sciences 23, n.º 6 (9 de março de 2022): 2940. http://dx.doi.org/10.3390/ijms23062940.

Texto completo da fonte
Resumo:
Investigation of interactions between the target protein molecule and ligand allows for an understanding of the nature of the molecular recognition, functions, and biological activity of protein–ligand complexation. In the present work, non-specific interactions between a model protein (Bovine Serum Albumin) and four cyclitols were investigated. D-sorbitol and adonitol represent the group of linear-structure cyclitols, while shikimic acid and D-(–)-quinic acid have cyclic-structure molecules. Various analytical methods, including chromatographic analysis (HPLC-MS/MS), electrophoretic analysis (SDS-PAGE), spectroscopic analysis (spectrofluorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy), and isothermal titration calorimetry (ITC), were applied for the description of protein–cyclitol interactions. Additionally, computational calculations were performed to predict the possible binding places. Kinetic studies allowed us to clarify interaction mechanisms that may take place during BSA and cyclitol interaction. The results allow us, among other things, to evaluate the impact of the cyclitol’s structure on the character of its interactions with the protein.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Li, Fengzhi, Ieman A. M. Aljahdali e Xiang Ling. "Molecular Glues: Capable Protein-Binding Small Molecules That Can Change Protein–Protein Interactions and Interactomes for the Potential Treatment of Human Cancer and Neurodegenerative Diseases". International Journal of Molecular Sciences 23, n.º 11 (1 de junho de 2022): 6206. http://dx.doi.org/10.3390/ijms23116206.

Texto completo da fonte
Resumo:
Molecular glue (MG) compounds are a type of unique small molecule that can change the protein–protein interactions (PPIs) and interactomes by degrading, stabilizing, or activating the target protein after their binging. These small-molecule MGs are gradually being recognized for their potential application in treating human diseases, including cancer. Evidence suggests that small-molecule MG compounds could essentially target any proteins, which play critical roles in human disease etiology, where many of these protein targets were previously considered undruggable. Intriguingly, most MG compounds with high efficacy for cancer treatment can glue on and control multiple key protein targets. On the other hand, a single key protein target can also be glued by multiple MG compounds with distinct chemical structures. The high flexibility of MG–protein interaction profiles provides rich soil for the growth and development of small-molecule MG compounds that can be used as molecular tools to assist in unraveling disease mechanisms, and they can also facilitate drug development for the treatment of human disease, especially human cancer. In this review, we elucidate this concept by using various types of small-molecule MG compounds and their corresponding protein targets that have been documented in the literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Cossins, Benjamin, e Alastair Lawson. "Small Molecule Targeting of Protein–Protein Interactions through Allosteric Modulation of Dynamics". Molecules 20, n.º 9 (10 de setembro de 2015): 16435–45. http://dx.doi.org/10.3390/molecules200916435.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Liu, Ruchuan, Dehong Hu, Xin Tan e H. Peter Lu. "Revealing Two-State Protein−Protein Interactions of Calmodulin by Single-Molecule Spectroscopy". Journal of the American Chemical Society 128, n.º 31 (agosto de 2006): 10034–42. http://dx.doi.org/10.1021/ja057005m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Yoo, Janghyun, Tae-Sun Lee, Byungsan Choi, Min Ju Shon e Tae-Young Yoon. "Observing Extremely Weak Protein–Protein Interactions with Conventional Single-Molecule Fluorescence Microscopy". Journal of the American Chemical Society 138, n.º 43 (25 de outubro de 2016): 14238–41. http://dx.doi.org/10.1021/jacs.6b09542.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Horswill, A. R., S. N. Savinov e S. J. Benkovic. "A systematic method for identifying small-molecule modulators of protein-protein interactions". Proceedings of the National Academy of Sciences 101, n.º 44 (21 de outubro de 2004): 15591–96. http://dx.doi.org/10.1073/pnas.0406999101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia