Literatura científica selecionada sobre o tema "Prompt elastogravity signals"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Prompt elastogravity signals".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Prompt elastogravity signals"
Vallée, Martin, e Kévin Juhel. "Multiple Observations of the Prompt Elastogravity Signals Heralding Direct Seismic Waves". Journal of Geophysical Research: Solid Earth 124, n.º 3 (março de 2019): 2970–89. http://dx.doi.org/10.1029/2018jb017130.
Texto completo da fonteJuhel, K., J.-P. Montagner, M. Vallée, J. P. Ampuero, M. Barsuglia, P. Bernard, E. Clévédé, J. Harms e B. F. Whiting. "Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture". Geophysical Journal International 216, n.º 2 (18 de outubro de 2018): 935–47. http://dx.doi.org/10.1093/gji/ggy436.
Texto completo da fonteShimoda, Tomofumi, Kévin Juhel, Jean-Paul Ampuero, Jean-Paul Montagner e Matteo Barsuglia. "Early earthquake detection capabilities of different types of future-generation gravity gradiometers". Geophysical Journal International 224, n.º 1 (10 de outubro de 2020): 533–42. http://dx.doi.org/10.1093/gji/ggaa486.
Texto completo da fonteJuhel, Kévin, Quentin Bletery, Andrea Licciardi, Martin Vallée, Céline Hourcade e Théodore Michel. "Fast and full characterization of large earthquakes from prompt elastogravity signals". Communications Earth & Environment 5, n.º 1 (4 de outubro de 2024). http://dx.doi.org/10.1038/s43247-024-01725-9.
Texto completo da fonteLicciardi, Andrea, Quentin Bletery, Bertrand Rouet-Leduc, Jean-Paul Ampuero e Kévin Juhel. "Instantaneous tracking of earthquake growth with elastogravity signals". Nature, 11 de maio de 2022. http://dx.doi.org/10.1038/s41586-022-04672-7.
Texto completo da fonteHourcade, Céline, Kévin Juhel e Quentin Bletery. "PEGSGraph: A Graph Neural Network for Fast Earthquake Characterization Based on Prompt ElastoGravity Signals". Journal of Geophysical Research: Machine Learning and Computation 2, n.º 1 (17 de fevereiro de 2025). https://doi.org/10.1029/2024jh000360.
Texto completo da fonteJuhel, Kévin, Zacharie Duputel, Luis Rivera e Martin Vallée. "Early Source Characterization of Large Earthquakes Using W Phase and Prompt Elastogravity Signals". Seismological Research Letters, 14 de novembro de 2023. http://dx.doi.org/10.1785/0220230195.
Texto completo da fonteTeses / dissertações sobre o assunto "Prompt elastogravity signals"
Arias, Mendez Gabriela. "Alerte tsunami à partir de signaux élasto-gravitationnels par apprentissage profond". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5080.
Texto completo da fonteAccurate and timely estimation of large earthquake magnitudes is critical to forecast potential tsunamis. Traditional earthquake early warning systems, relying on the early recorded seismic (P) waves, provide fast magnitude (Mw) estimates but typically saturate for Mw ≥ 7.5 events, making them unfit for tsunami warning. Alternative systems, relying on the later W phase or on geodetic signals, provide more accurate unsaturated magnitude estimates, to the cost of much slower warning, and therefore much shorter warning times. In this context, we explore the potential of prompt elastogravity signals (PEGS). PEGS propagate at the speed of light, are sensitive to the magnitude and focal mechanism of the earthquake and do not saturate for very large events. In order to rapidly leverage the information contained in these very low-amplitude signals we use a deep learning approach. We first train a Convolutional Neural Network (CNN) to estimate the magnitude and location of an earthquake based on synthetic PEGS augmented with empirical noise (recorded by actual seismometers). Tested on real data along the chilean subduction zone, we show that it would have estimated correctly the magnitude of the 2010 Mw 8.8 Maule earthquake. Nevertheless, the approach appears to be limited to Mw ≥ 8.7 events in this context. We then use a Graph Neural Network (GNN) designed to improve the performance of the CNN. We show that the GNN can be used to rapidly estimate the magnitude of Mw ≥ 8.3 events in Peru. Finally, we implement the model in the early warning system of Peru (as a complement of the current earthquake early warning system) and test its operational use for tsunami warning in simulated real time