Literatura científica selecionada sobre o tema "Programing learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Programing learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Programing learning"
Jakoš, Franc, e Domen Verber. "Learning Basic Programing Skills With Educational Games". Journal of Educational Computing Research 55, n.º 5 (2 de dezembro de 2016): 673–98. http://dx.doi.org/10.1177/0735633116680219.
Texto completo da fonteMeilasari, Venty. "Pengaruh Penerapan Collaborative Learning Berbantu Ispring Presenter terhadap Hasil Belajar Program Linear". Eksponen 9, n.º 2 (26 de setembro de 2019): 52–58. http://dx.doi.org/10.47637/eksponen.v9i2.60.
Texto completo da fonteEfendi, Yasin, Robinson Situmorang e Diana Nomida Musnir. "How to Development Learning Models for Programing Algorithms E-Learning Assistance". Journal of Computational and Theoretical Nanoscience 17, n.º 2 (1 de fevereiro de 2020): 1523–33. http://dx.doi.org/10.1166/jctn.2020.8835.
Texto completo da fonteMilad, Khaled. "The Effectiveness Of Incorporating Interactive Learning Platforms To Programming Lectures". مجلة آفاق للدراسات الإنسانية والتطبيقية, n.º 1 (18 de abril de 2024): 245–53. http://dx.doi.org/10.37376/ajhas.vi1.4845.
Texto completo da fonteDoyle, Antoinette, e Ling Li. "Family-Focused Early Learning Programing: Access, Opportunities, and Issues in one Canadian Context". SAGE Open 11, n.º 4 (outubro de 2021): 215824402110469. http://dx.doi.org/10.1177/21582440211046943.
Texto completo da fonteKeandoungchun, Nantapong, Jitimon Angskun e Thara Angskun. "Motivation to Learning Computer Programing Using a Game Application". International Journal of Information and Education Technology 13, n.º 11 (2023): 1755–60. http://dx.doi.org/10.18178/ijiet.2023.13.11.1986.
Texto completo da fonteQureshi, Muhammad Aasim, Muhammad Asif e Faria Feroz. "Context-Free Grammar of a New Programming Language for Teaching and Learning". VFAST Transactions on Software Engineering 9, n.º 4 (31 de dezembro de 2021): 160–66. http://dx.doi.org/10.21015/vtse.v9i4.1016.
Texto completo da fonteA. Alhassan, Riyadh, e Yousef Y. Alfaifi. "The Effect of Using Flipped Classroom Strategy on Learning Computer Programing in Visual Basic and Students’ Attitudes Towards Learning Computer Programming". Journal of Educational & Psychological Sciences 19, n.º 03 (3 de setembro de 2018): 47–85. http://dx.doi.org/10.12785/jeps/190302.
Texto completo da fonteMANDARIA, George. "Methodology of Teaching Dynamic Programming". Journal of Technical Science and Technologies 3, n.º 1 (16 de setembro de 2014): 15–18. http://dx.doi.org/10.31578/jtst.v3i1.84.
Texto completo da fonteKawamura, Sadao, Norihisa Fukao e Hiroaki Ichii. "Teaching and Programing for Robots. Teaching and Learning for Robot Manipulators." Journal of the Robotics Society of Japan 17, n.º 2 (1999): 162–65. http://dx.doi.org/10.7210/jrsj.17.162.
Texto completo da fonteTeses / dissertações sobre o assunto "Programing learning"
Lundin, Deborah L. "Educational programing planning and transfer of learning strategies : a descriptive study of professional development in grantsmanship". Virtual Press, 2006. http://liblink.bsu.edu/uhtbin/catkey/1336622.
Texto completo da fonteDepartment of Educational Studies
Léonard, Marielle. "Approche didactique et instrumentale de la pensée informatique : focus sur le concept de motif". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILH034.
Texto completo da fonteIn France, since 2016, introduction to computer programming has been included in compulsory school curricula. The objective of this thesis is to understand the conceptualization process when solving programming puzzles by subjects aged 7 to 15 years old. To this end, we combine the respective contributions of conceptual field theory (Vergnaud, 1991) and the analysis of pupils activity in a TEL environment. We focus on the concept of pattern, in particular during the first confrontations with the loop notion in block programming. We define a pattern as “an entity identifiable within a set because it is repeated identically or with predictable variations” and highlight the essential place of this concept when initiating algorithmic thinking. The didactic approach adopted aims to position the concept of pattern within a conceptual field of basic notions of algorithms, a conceptual field which has as its scope imperative programming in Scratch language at compulsory school level. Within this conceptual field, we deepen the study of programming situations of a virtual robot on a grid which require the use of a loop. Our experimental protocol is backed by the Algoréa online programming competition. We are building methodological tools including a data collection device at three scales, statistical analyzes on large samples, automation of the processing of interaction traces with the EIAH, and qualitative analyzes of screen video recordings. This methodological tool, which makes it possible to combine the precision of qualitative analyzes and statistical robustness, constitutes one of the contributions of this thesis. With this approach, we first carry out an instrumental study of the TEL environmentas defined by Rabardel (1995). Its goal is to distinguish what, in the activity, relates to conceptual mastery and what relates to instrumental mastery of a particular programming environment. We then focus on conceptualization-in-act in the sense of Vergnaud(1991). We identify the schemes implemented by the subject during the programming activity studied, in particular the underlying operational invariants. Our analyzes allow us to identify and document levels of difficulty and recurring errors during the first learning of the loop. One of our research perspectives is to reproduce this approach to carry out investigations on all the concepts covered during the introduction to computer programming at compulsory school level. These results constitute a contribution likely to help elementary and middle school teachers to support their pupils and help them overcome the difficulties encountered when learning fundamental concepts of algorithms
Kažukauskas, Irmantas. "Programinio paketo AUTOCAD brėžimo komandų mokymo ir kontrolės programinių priemonių sudarymas ir tyrimas". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2004. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2004~D_20040526_150546-60807.
Texto completo da fonteAreizaga, Ander. "Programming learning games : Identification of game design patterns in programming learning games". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17230.
Texto completo da fonteSheikholeslami, Sina. "Ablation Programming for Machine Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258413.
Texto completo da fonteEftersom maskininlärningssystem används i ett ökande antal applikationer från analys av data från satellitsensorer samt sjukvården till smarta virtuella assistenter och självkörande bilar blir de också mer och mer komplexa. Detta innebär att mer tid och beräkningsresurser behövs för att träna modellerna och antalet designval och hyperparametrar kommer också att öka. På grund av denna komplexitet är det ofta svårt att förstå vilken effekt varje komponent samt designval i ett maskininlärningssystem har på slutresultatet.En enkel metod för att få insikt om vilken påverkan olika komponenter i ett maskinlärningssytem har på systemets prestanda är att utföra en ablationsstudie. En ablationsstudie är en vetenskaplig undersökning av maskininlärningssystem för att få insikt om effekterna av var och en av dess byggstenar på dess totala prestanda. Men i praktiken så är ablationsstudier ännu inte vanligt förekommande inom maskininlärning. Ett av de viktigaste skälen till detta är det faktum att för närvarande så krävs både stora ändringar av koden för att utföra en ablationsstudie, samt extra beräkningsoch tidsresurser.Vi har försökt att ta itu med dessa utmaningar genom att använda en kombination av distribuerad asynkron beräkning och maskininlärning. Vi introducerar maggy, ett ramverk med öppen källkodsram för asynkron och parallell hyperparameteroptimering och ablationsstudier med PySpark och TensorFlow. Detta ramverk möjliggör bättre resursutnyttjande samt ablationsstudier och hyperparameteroptimering i ett enhetligt och utbyggbart API.
Wang, Tianze. "Machine Learning for Constraint Programming". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254660.
Texto completo da fonteDet är väl etablerat att det kräver många års erfarenhet av domänexpertis och mycket experimentell felsökning för att utforma en bra sökheuristik för villkorsprogrammeringsmodeller. I denna avhandling beskriver vi genomförandet av en empirisk studie med syftet att utreda potentialen av maskininlärningstekniker för att underlätta framtagandet av villkorsprogrammeringslösare.Mer specifikt undersöker vi maskininlärningsmodellers regressionsförmåga att förutse makespanöch lösningstid för "Job-Shop Scheduling Problem"utan att för den delen lösa den givna "Job-Shop Scheduling Problem"instansen. Flertalet maskininlärningsmodeller testas med manuellt framtagna särdrag som indata. Olika djupmaskininlärningsarkitekturer utforskas med antingen bara "Job-Shop Scheduling Problem-instanser som indata eller med ytterliggare indata i form av de manuellt framtagna särdragen.××Experimentresultaten motiverar användandet av flertalet av de föreslagna maskininlärningsmodellerna för att förutse makespanöch lösningstid. För förutsägandet av makespan"(enhet: maskintidsenhet) uppnår den bästa Random Forestregressionsmodellen ett medelkvadratfel på 0,78 på testdatamängden. Den bästa djupmaskininlärningsmodellen uppnår ett medelkvadratfel på 0,74 på testdatamängden. För förutsägandet av lösningstiden (enhet: millisekund) av "Job-Shop Scheduling Problem"uppnår den bästa Random Forestregressionsmodellen ett medelkvadratfel på 2.12 107 på testdatamängden. Den bästa djupmaskininlärningsmodellen uppnår ett medelkvadratfel på 5.19 107 på testdatamängden.Skillnadsorsakerna rörande de olika maskininlärningsmodellernas prestanda diskuteras i avhandlingen samt framtida forskningsinriktningar.
Sundblad, Graziella. "Virtual Reality and its Impact on Programming Learning Process - Designing VR-based Programming Learning Practices". Thesis, Malmö universitet, Fakulteten för kultur och samhälle (KS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-22396.
Texto completo da fonteConti, Matteo. "Machine Learning Based Programming Language Identification". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20875/.
Texto completo da fonteCASTRO, THAIS HELENA CHAVES DE. "SYSTEMATIC APPROACH FOR GROUP PROGRAMMING LEARNING". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18366@1.
Texto completo da fonteA investigação aqui relatada trata da concepção de elementos estruturantes para ampliar as oportunidades de intervenção pelo professor em um contexto de aprendizagem de programação em grupo. A partir de uma série de estudos de caso com turmas de calouros em cursos de computação, foi desenvolvida a sistematização de práticas, metodologias e tecnologias em uma abordagem para apoiar a aprendizagem de programação em grupo, baseada em três frentes de investigação: pressupostos pedagógicos, ferramentas LMS e métodos de colaboração. O eixo teórico referente à aprendizagem é a teoria de desenvolvimento cognitivo de Piaget, aliada a técnicas conhecidas de programação em grupo utilizadas no ensino de graduação em disciplinas introdutórias de programação. As ferramentas computacionais são utilizadas para monitorar e intervir durante o processo de aprendizagem. Nesse contexto, ambientes CSCL incentivam a colaboração e regulam as práticas desejadas. Nesta tese, outras tecnologias, como linguagens para representação de agentes e identificação de padrões são agregadas a eles para melhorar o acompanhamento e facilitar a intervenção. Por fim, como método de colaboração, é proposto um esquema progressivo de aprendizagem de programação em grupo, que auxilia os alunos a gradativamente adotarem práticas colaborativas na resolução de exercícios e que pode ser formalizado para incorporação a plataformas automatizadas.
The research reported here deals with devising structuring elements that may broaden intervention opportunities from the teacher in a context of group programming learning. Based on a set of case studies with freshmen in computing courses a systematization for practices, methods and technologies was developed producing an approach for supporting group programming based in three investigation paths: pedagogical assumptions, CSCL environments and collaboration methods. The main learning rationale is Jean Piaget’s Cognitive Development Theory, used alongside group programming techniques commonly applied in undergraduate introductory programming courses. Computational tools are used to monitor and intervene during learning process and in such context, CSCL environments encourage collaboration and regulate expected practices. In this thesis other technologies like languages for agent representation and patterning identification are also exploited for improving control and facilitate interventions. Finally, as collaboration method, it is proposed a Programming Progressive Learning Scheme that helps students to adopt collaborative practices when solving exercises and that can be formalized to be used with automated platforms.
Martin, Christopher James. "Designing engaging learning experiences in programming". Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/069f0e46-ae52-450d-84e1-1ff5c3fed38f.
Texto completo da fonteLivros sobre o assunto "Programing learning"
Roman, Steven. Learning Word programming. Sebastopol, CA: O'Reilly, 1998.
Encontre o texto completo da fonteSayood, Khalid. Learning Programming Using MATLAB. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-02017-9.
Texto completo da fonteRosemary, Sandstrom, e Australian Reading Association, eds. Programming for literacy learning. Carlton, Victoria: Australian Reading Association, 1994.
Encontre o texto completo da fonteEgges, Arjan, Jeroen D. Fokker e Mark H. Overmars. Learning C# by Programming Games. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36580-5.
Texto completo da fontevan Toll, Wouter, Arjan Egges e Jeroen D. Fokker. Learning C# by Programming Games. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59252-6.
Texto completo da fonteTran, Dustin. Probabilistic Programming for Deep Learning. [New York, N.Y.?]: [publisher not identified], 2020.
Encontre o texto completo da fonteDilts, Robert. Dynamic learning. Capitola, Calif: Meta Publications, 1995.
Encontre o texto completo da fonteOkita, Alex. Learning C# Programming with Unity 3D. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: A K Peters/CRC Press, 2019. http://dx.doi.org/10.1201/9780429810251.
Texto completo da fonteBogdanovych, Anton, e Tomas Trescak. Learning Java Programming in Clara‘s World. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75542-3.
Texto completo da fonteYoshihiko, Hasegawa, e Paul Topon Kumar, eds. Applied genetic programming and machine learning. Boca Raton, Fla: Taylor & Francis, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Programing learning"
Huang, Tien-Chi, Vera Yu Shu, Chia-Chen Chen e Yu-Lin Jeng. "Coding, the New Literacy: Thinking-Oriented Programing Learning e-Book". In Emerging Technologies for Education, 27–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52836-6_4.
Texto completo da fonteDavis, Adam L. "Functional Programming". In Learning Groovy, 45–54. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2117-4_9.
Texto completo da fonteDavis, Adam L. "Functional Programming". In Learning Groovy 3, 77–90. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5058-7_9.
Texto completo da fonteBhimavarapu, Usharani, e Jude D. Hemanth. "GUI Programming". In Learning Professional Python, 151–76. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003462392-7.
Texto completo da fonteCrotts, Joshua. "Object-Oriented Programming". In Learning Java, 191–323. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66638-4_4.
Texto completo da fonteEgges, Arjan, Jeroen D. Fokker e Mark H. Overmars. "Programming". In Learning C# by Programming Games, 11–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36580-5_2.
Texto completo da fonteWebb, Geoffrey I., Johannes Fürnkranz, Johannes Fürnkranz, Johannes Fürnkranz, Geoffrey Hinton, Claude Sammut, Joerg Sander et al. "Dynamic Programming". In Encyclopedia of Machine Learning, 298–308. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_237.
Texto completo da fonteZhang, Xinhua, Novi Quadrianto, Kristian Kersting, Zhao Xu, Yaakov Engel, Claude Sammut, Mark Reid et al. "Genetic Programming". In Encyclopedia of Machine Learning, 457. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_340.
Texto completo da fonteUtgoff, Paul E., James Cussens, Stefan Kramer, Sanjay Jain, Frank Stephan, Luc De Raedt, Ljupčo Todorovski et al. "Inductive Programming". In Encyclopedia of Machine Learning, 537–44. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_399.
Texto completo da fonteSakama, Chiaki. "Learning Dishonesty". In Inductive Logic Programming, 225–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38812-5_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Programing learning"
Nakao, Motoi, e Yuhei Oomachi. "Observation and Evaluation for Individual Student Using Learning Analytics of Software Programing and Functional Questionnaire". In 2024 IEEE/ACIS 22nd International Conference on Software Engineering Research, Management and Applications (SERA), 295–99. IEEE, 2024. http://dx.doi.org/10.1109/sera61261.2024.10685574.
Texto completo da fonteWang, Ke, Benjamin Lin, Bjorn Rettig, Paul Pardi e Rishabh Singh. "Data-Driven Feedback Generator for Online Programing Courses". In L@S 2017: Fourth (2017) ACM Conference on Learning @ Scale. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3051457.3053999.
Texto completo da fonteWang, Zhilei, Wentao Song, Yang Lei, Yu Wang e Naijie Gu. "Learning Heuristics Approaches in Mixed Integer Linear Programing". In 2024 9th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2024. http://dx.doi.org/10.1109/icccs61882.2024.10603216.
Texto completo da fonteKamada, Hiroshi, Kazutaka Nishikawa e Yasunori Okui. "The Visual Interactive Programing Learning System Using Image Processing". In 2016 Third International Conference on Computing Measurement Control and Sensor Network (CMCSN). IEEE, 2016. http://dx.doi.org/10.1109/cmcsn.2016.21.
Texto completo da fonteBauer, P., A. Rojko e R. Ionel. "Distance learning module for solar electricity with programing of MPPT". In 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013. http://dx.doi.org/10.1109/epe.2013.6634716.
Texto completo da fonteVegh, Ladislav, e Veronika Stoffova. "LEARNING OBJECT-ORIENTED PROGRAMMING BY CREATING GAMES". In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-002.
Texto completo da fonteSrpak, Ilija, Ladislav Havaš, Tomislav Horvat e Emilija Tomičić. "ASPECTS AND ROLES OF DIFFERENT PROGRAMING LANGUAGES AND THEIR USE IN STEM EDUCATION". In 15th International Conference on Education and New Learning Technologies. IATED, 2023. http://dx.doi.org/10.21125/edulearn.2023.0830.
Texto completo da fonteShanahan, Joe. "Students create game-based online learning environment that teaches Java programing". In the 47th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1566445.1566545.
Texto completo da fonteYu, Huiming. "DEVELOPED LECTURE VIDEOS AND PRACTICES QUESTIONS TO AID TEACHING UNDERGRADUATE PROGRAMING LANGUAGES COURSES ONLINE". In 15th International Conference on Education and New Learning Technologies. IATED, 2023. http://dx.doi.org/10.21125/edulearn.2023.0195.
Texto completo da fonteSeetala, Naidu, e Jumel Jno-Baptiste. "BUILDING AND PROGRAMING ROBOTS – A GROUP ACTIVITY FOR ENHANCED LEARNING OF UNDERGRADUATE GENERAL PHYSICS". In 11th International Conference on Education and New Learning Technologies. IATED, 2019. http://dx.doi.org/10.21125/edulearn.2019.2638.
Texto completo da fonteRelatórios de organizações sobre o assunto "Programing learning"
Mamgasarian, Olivi L. Machine Learning via Mathematical Programming. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1999. http://dx.doi.org/10.21236/ada382583.
Texto completo da fonteKumar, Avni, Jeremy Kohlitz e Juliet Willetts. Mainstreaming Climate Risks into Rural Sanitation Programming in Lao PDR. Institute of Development Studies, novembro de 2022. http://dx.doi.org/10.19088/slh.2022.022.
Texto completo da fonteThorpe, Jodie, Alisha Ault, Iana Barenboim, Luize Guimarães, Evert-jan Quak e Katia Taela. Learning from Entrepreneurship Programming for Women’s Economic Empowerment. Institute of Development Studies, junho de 2023. http://dx.doi.org/10.19088/muva.2023.001.
Texto completo da fonteKiv, Arnold E., Olexandr V. Merzlykin, Yevhenii O. Modlo, Pavlo P. Nechypurenko e Iryna Yu Topolova. The overview of software for computer simulations in profile physics learning. [б. в.], setembro de 2019. http://dx.doi.org/10.31812/123456789/3260.
Texto completo da fonteNewman, Jessy, Briana Garcia, Eliza Laible e Deborah Moroney. Applying Summer Learning Evidence: How Texas State Policy Supports Strong Programming. American Institutes for Research, outubro de 2024. http://dx.doi.org/10.59656/yd-os5185.001.
Texto completo da fonteDavis, Allison Crean, John Hitchcock, Beth-Ann Tek, Emily Diaz e Molly Hershey-Arista. National Call to Action for Summer Learning: How Did School Districts Respond? Westat, dezembro de 2022. http://dx.doi.org/10.59656/yd-os2222.001.
Texto completo da fonteBrinkerhoff, Derick W., Sarah Frazer e Lisa McGregor-Mirghani. Adapting to Learn and Learning to Adapt: Practical Insights from International Development Projects. RTI Press, janeiro de 2018. http://dx.doi.org/10.3768/rtipress.2018.pb.0015.1801.
Texto completo da fonteShokaliuk, Svitlana V., Yelyzaveta Yu Bohunenko, Iryna V. Lovianova e Mariya P. Shyshkina. Technologies of distance learning for programming basics lessons on the principles of integrated development of key competences. [б. в.], julho de 2020. http://dx.doi.org/10.31812/123456789/3888.
Texto completo da fonteFreed, Danielle. K4D Learning Journey Strengthens the Mainstreaming of Water Security. Institute of Development Studies, setembro de 2022. http://dx.doi.org/10.19088/k4d.2022.164.
Texto completo da fonteUndie, Chi-Chi, Josephine Ngebeh, Jane Namwebya, Michael Gaitho, George Odwe, Nachela Chelwa, Harriet Birungi e Michael Mbizvo. Practice-based learning: Establishing simple monitoring systems to support SGBV programming in refugee settings. Population Council, 2020. http://dx.doi.org/10.31899/rh14.1031.
Texto completo da fonte