Literatura científica selecionada sobre o tema "Problèmes paramétrés"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Problèmes paramétrés".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Problèmes paramétrés"

1

Khoder, Wassim. "Recalage de la navigation inertielle hybride par le filtrage de Kalman sans parfum paramétré à quaternions". MATEC Web of Conferences 261 (2019): 06003. http://dx.doi.org/10.1051/matecconf/201926106003.

Texto completo da fonte
Resumo:
Dans ce papier, nous avons développé un algorithme d’hybridation (recalage) de la navigation inertielle, noté Q-SUKF, qui combine le filtre de Kalman sans parfum à paramètre (SUKF) et l’utilisation des propriétés de rotation et d’unicité des quaternions (Q) pour représenter l’attitude. L’utilisation des quaternions unités dans le calcul de la matrice de covariance d’erreurs prédite empêche les problèmes de singularité et la dérive des informations d’attitude. L’augmentation de l’incertitude dans les angles d’attitude, est modélisé par un vecteur de rotation pour garantir que la normalisation du quaternion est toujours maintenue dans le filtre. Le Q-SUKF proposé est bien adapté pour estimer récursivement les états de la navigation, quelque soient les valeurs initiales sur les angles d’attitude ou la dynamique des mouvements du mobile, à l’aide des capteurs externes qui sont complémentaires et/ou redondants.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ambroise, B. "Génèse des débits dans les petits bassins versants ruraux en milieu tempéré : 2 - Modélisation systémique et dynamique". Revue des sciences de l'eau 12, n.º 1 (12 de abril de 2005): 125–53. http://dx.doi.org/10.7202/705346ar.

Texto completo da fonte
Resumo:
La deuxième partie de cette synthèse bibliographique sur la genèse des débits montre comment les connaissances acquises sur le fonctionnement des petits bassins ruraux (cf. Partie 1) peuvent être utilisées pour les modéliser. Elle présente les différents types de modèles hydrologiques (empiriques globaux de type "boîte noire", conceptuels globaux ou semi-spatialisés, physiques spatialisés, physico-conceptuels semi-spatialisés) disponibles pour générer des chroniques événementielles ou continues, et déduit de l'analyse de leurs avantages et limites respectifs certaines recommandations pour leur choix et leur usage. Elle indique ensuite différents problèmes rencontrés dans toute modélisation, et quelques pistes possibles pour les résoudre: incorporation des flux couplés à l'eau dans les modèles hydrologiques, erreurs liées à la structure du modèle (limites et simplifications théoriques, approximations numériques, discrétisations temporelle et spatiale), problèmes métrologiques et méthodologiques limitant la disponibilité des données, hétérogénéités à toutes les échelles limitant l'adéquation des données pour paramétrer les modèles, calage du modèle limitant son aptitude à simuler des scénarios de changement. Elle souligne la nécessité d'une validation multicritère des modèles et d'une estimation de l'incertitude sur les simulations générée par ces diverses sources d'erreurs, ainsi que le besoin d'une meilleure interaction entre expérimentation de terrain et modélisation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chen, Sheng, Nan Li e Steven V. Sam. "Generalized Ehrhart polynomials". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AN,..., Proceedings (1 de janeiro de 2010). http://dx.doi.org/10.46298/dmtcs.2857.

Texto completo da fonte
Resumo:
International audience Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in $P(n)$ is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related. Soit $P$ un polytope avec sommets rationelles. Un théorème classique des Ehrhart déclare que le nombre de points du réseau dans les dilatations $P(n) = nP$ est un quasi-polynôme en $n$. Nous généralisons ce théorème en permettant à des sommets de $P(n)$ comme arbitraire fonctions rationnelles en $n$. Dans ce cas, nous prouvons que le nombre de points du réseau en $P(n)$ est une quasi-polynôme pour $n$ assez grand. Notre travail a été motivée par une conjecture d'Ehrhart sur le nombre de solutions à linéaire paramétrée Diophantine équations dont les coefficients sont des polyômes en $n$, et nous expliquer comment ces deux problèmes sont liés.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Problèmes paramétrés"

1

Sérée, Bastien. "Problèmes d'optimisation des les graphes paramétrés". Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0066.

Texto completo da fonte
Resumo:
Nous considérons des graphes orientés pondérés dont l’énergie est paramétrée. Nous proposons dans un premier temps un algorithme qui, étant donné un graphe et un de ses sommets, renvoie des arbres, chaque arbre représentant les plus courtschemins depuis la source vers tous les autres sommets du graphe pour une zone particulière de l’espace des paramètres. De plus l’union de ces zones couvre l’espace des paramètres. Nous considérons ensuite l’accessibilité dans les graphes à énergie multidimensionnelle, avec un type de contraintes plus absolues qui imposent que l’énergie reste entre des bornes. Nous montrons la décidabilité et la complexité du problème quel que soit le nombre de paramètres et de dimensions lorsque les paramètres prennent des valeurs entières. Nous montrons également l’indécidabilité de ce problème avec au moins un paramètre lorsque la dimension est supérieure ou égale à deux. Nous étudions enfin des jeux de parité à un et deux joueurs sur les graphes paramétrés dont l’objectif est la conjonction d’une condition qualitative sur la parité et d’une condition quantitative : l’énergiedoit rester positive. Nous montrons la décidabilité et prouvons des bornes de la complexité du problème de la recherche d’une stratégie gagnante dans les cas à un et à deux joueurs
We are considering weighted oriented graphs with parametrized energy. Firstly we propose an algorithm that, given a graph and one of its vertices, returns trees, every tree representing shortest-paths from the source to every other vertex for a particular zone of the parameter space. Moreover, union of these zones is a covering of the parameter space. Then we consider reachability in graphs with multi-dimensional energy, with stricter constraints that enforce the energy to stay between bounds. We prove decidabilty and complexity of this problem regardless of the dimension and the number of parameters when parameters take integer values. We alsoprove the undecidability of this problem when there is at least one parameter and the dimension is at least two. Finally we study paritygames on parametrized graphs with one and two players whose objective is the conjunction of a qualitative condition on the parity andquantitative one : energy must stay positive. We show the decidability and prove bounds on the complexity of the problem of searchinga winning strategy in both cases with one and two players
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Heyberger, Christophe. "PGD espace-temps adaptée pour le traitement de problèmes paramétrés". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2014. http://tel.archives-ouvertes.fr/tel-01048636.

Texto completo da fonte
Resumo:
Cette thèse s'intéresse à la question récurrente qu'est la résolution d'un problème pour un grand nombre de configurations différentes. Malgré l'augmentation constante de la puissance de calcul que l'on connait aujourd'hui, le traitement direct d'un tel problème reste souvent hors de portée. La technique qui est développée ici est basée sur l'utilisation de la Proper Generalized Decomposition (PGD) dans le cadre de la méthode LATIN. On étudie tout d'abord la capacité de cette technique de réduction de modèle à résoudre un problème paramétré pour un espace de conception donné. Lors du traitement d'un tel problème, on génère une base réduite que l'on peut réutiliser et éventuellement enrichir en traitant un par un les problèmes correspondants aux jeux de paramètres étudiés. Le but devient alors de développer une stratégie, inspirée par la méthode " Reduced Basis ", afin d'explorer de façon rationnelle l'espace des paramètres. L'objectif étant de construire, avec le minimum de résolutions, une base réduite " complète " qui permet de résoudre tous les autres problèmes de l'espace de conception sans enrichir cette base. On commence dès lors par montrer l'existence d'une telle base complète en extrayant les informations les plus pertinentes des solutions PGD d'un problème pour tous les jeux de paramètres de l'espace de conception. On propose ensuite une stratégie rationnelle pour construire cette base complète sans la nécessité préalable de la résolution du problème pour tous les jeux de paramètres. Enfin, les performances de la méthode proposée sont illustrées sur plusieurs exemples, montrant des gains conséquents lorsque des études récurrentes doivent être menées.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wurtzer, Floriane. "Une approche par modèles réduits pour la résolution de problèmes paramétrés multiphysiques fortement couplés". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST112.

Texto completo da fonte
Resumo:
Dans les phases de conception, d'optimisation ou de maintenance prédictive, les ingénieurs sont amenés à tester diverses configurations de chargement, de géométrie ou de propriétés matériaux pour construire des métamodèles, effectuer des analyses de sensibilité ou ajuster des paramètres incertains. Pour ce faire, des appels répétés à des modèles numériques sont requis afin de résoudre un grand nombre de problèmes physiques semblables. Cependant, une telle démarche peut entraîner un coût de calcul prohibitif, surtout dans un cadre multiphysique --- au cœur des études réalisées aujourd'hui dans les industries de pointe. En effet, chaque simulation comporte alors des millions de degrés de liberté, et doit intégrer plusieurs physiques ainsi que leurs interactions mutuelles. Dans ce contexte, cette thèse propose une stratégie de calcul performante pour résoudre de nombreux problèmes multiphysiques similaires. La stratégie développée repose sur l'association de la méthode LATIN-PGD et d'un processus d'initialisation qui tire partie des calculs précédemment réalisés pour aborder un nouveau jeu de paramètres. En particulier, une base réduite est construite indépendamment pour chaque physique ; chacune de ces bases est réutilisée et enrichie au fil des calculs lorsque cela s'avère nécessaire. Les performances de la méthode sont illustrées sur un cas test thermo-mécanique fortement couplé de taille représentative. Une étude paramétrique complète, comportant une centaine de résolutions, est accélérée d'un facteur 5 par rapport à une application naïve de la méthode LATIN-PGD, et d'un facteur 45 comparé à une approche monolithique classique
During design, optimization or predictive maintenance stages, engineers need to test various configurations of loading, geometry or material properties in order to build metamodels, perform sensitivity analyses or adjust uncertain parameters. Repeated calls to numerical models are then required to solve numerous related physical problems. However, such an approach can lead to prohibitive computational costs, especially in a multiphysics framework, which is a major focus of today's studies in cutting-edge industries. Indeed, each simulation involves millions of degrees of freedom, and must encompass several physics and their mutual interactions. In this context, this thesis proposes a computational strategy for efficiently solving many similar multiphysics problems. The developed approach is based on the combination of the LATIN-PGD solver and an initialization procedure that takes advantage of previously performed calculations to tackle a new set of parameters. More specifically, a reduced-order basis is built independently for each physics; each basis is then reused and enriched throughout the calculations when deemed necessary. The performances of the method are illustrated on a test case of representative size involving a strong thermo-mechanical coupling. A complete parametric study, involving around a hundred resolutions, is accelerated by a factor of 5 compared with a naive application of the LATIN-PGD method, and by a factor of 45 in comparison with a conventional monolithic approach
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Daligault, Jean. "Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2011. http://tel.archives-ouvertes.fr/tel-00804206.

Texto completo da fonte
Resumo:
Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux problèmes que nous considérons sont les problèmes de Multicoupe et d'Arbre Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation naturelle du très classique problème de coupe, et consiste à séparer un ensemble donné de paires de sommets en supprimant le moins d'arêtes possible dans un graphe. Le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramétré par la taille de la solution est FPT (soluble à paramètre fixé), c'est-à-dire que l'existence d'une multicoupe de taille k dans un graphe à n sommets peut être décidée en temps f(k) ∗ poly(n). Nous montrons que Multicoupe dans les arbres admet un noyau polynomial, c'est-à-dire est réductible aux instances de taille polynomiale en k. Nous donnons un algorithme en temps O∗(3.72k) pour le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c'est-à-dire meilleur que 2n). Nous fournissons aussi un noyau quadratique et une approximation à facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires et des propriétés structurelles qui concernent, entre autres, les décompositions arborescentes, les mineurs, des règles de réduction et les s−t numberings. Nous présentons des résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisation des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une caractérisation partielle des classes de graphes 2-bel-ordonnées.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bui, Dung. "Modèles d'ordre réduit pour les problèmes aux dérivées partielles paramétrés : approche couplée POD-ISAT et chainage temporel par algorithme pararéel". Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0021/document.

Texto completo da fonte
Resumo:
Cette thèse porte sur la conception des méthodes robustes de réduction d’ordre de modèles numériques de type Éléments Finis (EF) avec contrôle de la précision. La réduction d’ordre est en général nécessaire pour réduire drastiquement les temps de calcul et permettre ainsi une analyse paramétrique, une étude de faisabilité ou de performance de système (avion, unité de production, procédé complexe, etc). Dans cette étude, la technique de décomposition orthogonale aux valeurs propres (POD) sera utilisée pour construire des modèles réduits locaux. Informatiquement parlant, le “modèle” sera considéré comme une base de données de résultats de calcul avec capacité d’extrapolation et d’interpolation locale. Une stratégie adaptative pour stocker et accéder à la base de données est étudiée en étendant l’algorithme In situ Adaptive Tabulation (ISAT) proposé initialement par Pope. En fonction de l’usage et des exigences en précision des résultats, la base de données est enrichie en ligne (online) par des appels au modèle fin en respectant une précision spécifiée jusqu’à couvrir le domaine paramétrique entier, après quoi l’évaluation d’une solution devient très peu couteuse. L’approche couplée POD-ISAT proposée dans cette thèse fournit une méthode de réduction de modèle EF très performante. La méthodologie est évaluée sur un cas réel de conditionnement d’air en régime stationnaire de cabine d’avion dépendant de plusieurs paramètres de conception (température et vitesse d’entrée d’air, mode de ventilation personnalisée, conductivité thermique du fuselage, etc.). Pour les problèmes d’évolution en temps, nous explorons une piste de chainage de modèles et d’utilisation d’algorithme de parallélisation en temps tel que l’algorithme pararéel initialement proposé par Lions, Maday et Turinici (2001). Nous proposons ici une variante quasi-Newton de l’algorithme pararéel que nous appelons algorithme Broyden-pararéel. Il est appliqué au calcul de la diffusion d’un gaz dans la cabine d’avion. Cette thèse s’insère dans le cadre du projet CSDL (Complex System Design Lab, Fond Unique Interministériel) visant à développer une plate-forme logicielle multidisciplinaire pour la conception de systèmes complexes
In this thesis, an efficient Reduced Order Modeling (ROM) technique with control of accuracy for parameterized Finite Element solutions is proposed. The ROM methodology is usually necessary to drastically reduce the computational time and allow for tasks like parameter analysis, system performance assessment (aircraft, complex process, etc.). In this thesis, a ROM using Proper Orthogonal Decomposition (POD) will be used to build local models. The “model” will be considered as a database of simulation results store and retrieve the database is studied by extending the algorithm In Situ Adaptive Tabulation (ISAT) originally proposed by Pope (1997). Depending on the use and the accuracy requirements, the database is enriched in situ (i.e. online) by call of the fine (reference) model and construction of a local model with an accuracy region in the parameter space. Once the trust regions cover the whole parameter domain, the computational cost of a solution becomes inexpensive. The coupled POD-ISAT, here proposed, provides a promising effective ROM approach for parametric finite element model. POD is used for the low-order representation of the spatial fields and ISAT for the local representation of the solution in the design parameter space. This method is tested on a Engineering case of stationary air flow in an aircraft cabin. This is a coupled fluid-thermal problem depending on several design parameters (inflow temperature, inflow velocity, fuselage thermal conductivity, etc.). For evolution problems, we explore the use of time-parallel strategies, namely the parareal algorithm originally proposed by Lions, Maday and Turinici (2001). A quasi-Newton variant of the algorithm called Broyden-parareal algorithm is here proposed. It is applied to the computation of the gas diffusion in an aircraft cabin. This thesis is part of the project CSDL (Complex System Design Lab) funded by FUI (Fond Unique Interministériel) aimed at providing a software platform for multidisciplinary design of complex systems
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Cochefert, Manfred. "Algorithmes exacts et exponentiels pour les problèmes NP-difficiles sur les graphes et hypergraphes". Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0336/document.

Texto completo da fonte
Resumo:
Dans cette thèse, nous nous intéressons à la résolution exacte de problèmes NP-difficiles sur les graphes et les hypergraphes. Les problèmes que nous étudions regroupent dans un premier temps des variantes du problème classique du nombre chromatique. Les variantes de ce problème se distinguent par la difficulté introduite par les relations entre les classes de couleurs, ou la difficulté de reconnaissance des classes de couleurs elles-mêmes. Puis nous ferons le lien avec les problèmes de transversaux sur les hypergraphes. Plus particulièrement, il s’agira de s’intéresser à l’énumération de transversaux minimaux dans un hypergraphe de rang borné. Outre la résolution exacte, nous nous intéressons à la résolution à paramètre fixe. Le problème de racine carrée de graphe est un problème important en théorie des graphes. Nous proposons et montrons la solubilité à paramètre fixe de deux problèmes d’optimisation reliés. Finalement, nous nous intéresserons à la résolution de problèmes de graphe, soit en lien avec les problèmes de colorations, soit pour montrer les performances possibles de différents algorithmes en fonction de l’espace mémoire disponible. Dans cette thèse, nous aurons à cœur d’appliquer judicieusement la grande majorité des techniques essentielles en algorithmique exacte exponentielle. Principalement, nous appliquerons la programmation dynamique ou le principe d’inclusion-exclusion pour les problèmes de coloration. La technique de programmation dynamique se retrouvera pour d’autres problèmes de cette thèse, aux côtés d’autres méthodes comme la technique de branchement ou de mesurer et conquérir
In this thesis, we are interested in the exact computation of np-hard problems on graphs and hypergraphs. Firstly, we study several variants of colorings. Those variants appear harder than the famous chromatic number problem, by adding difficulty in recognizing the color classes, or more often by introducing various relationships between them. Then we link to problems of transversals in hypergraphs. More precisely, we are interested in enumerating minimal transversals in bounded ranked hypergraphs. Besides the exact computation, we are also interested in fixed parameter tractability. For this area, we study two optimization versions of the famous square root of graphs problem. Finally, we will be interested in solving other problems of graphs related to colorings, or in order to compare efficiencies of algorithms depending on the memory space available. In this thesis, we will apply most of major techniques in designing exact exponential algorithms. The main techniques we use are dynamic programming, inclusion-exclusion, branching, or measure and conquer
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cochefert, Manfred. "Algorithmes exacts et exponentiels pour les problèmes NP-difficiles sur les graphes et hypergraphes". Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0336.

Texto completo da fonte
Resumo:
Dans cette thèse, nous nous intéressons à la résolution exacte de problèmes NP-difficiles sur les graphes et les hypergraphes. Les problèmes que nous étudions regroupent dans un premier temps des variantes du problème classique du nombre chromatique. Les variantes de ce problème se distinguent par la difficulté introduite par les relations entre les classes de couleurs, ou la difficulté de reconnaissance des classes de couleurs elles-mêmes. Puis nous ferons le lien avec les problèmes de transversaux sur les hypergraphes. Plus particulièrement, il s’agira de s’intéresser à l’énumération de transversaux minimaux dans un hypergraphe de rang borné. Outre la résolution exacte, nous nous intéressons à la résolution à paramètre fixe. Le problème de racine carrée de graphe est un problème important en théorie des graphes. Nous proposons et montrons la solubilité à paramètre fixe de deux problèmes d’optimisation reliés. Finalement, nous nous intéresserons à la résolution de problèmes de graphe, soit en lien avec les problèmes de colorations, soit pour montrer les performances possibles de différents algorithmes en fonction de l’espace mémoire disponible. Dans cette thèse, nous aurons à cœur d’appliquer judicieusement la grande majorité des techniques essentielles en algorithmique exacte exponentielle. Principalement, nous appliquerons la programmation dynamique ou le principe d’inclusion-exclusion pour les problèmes de coloration. La technique de programmation dynamique se retrouvera pour d’autres problèmes de cette thèse, aux côtés d’autres méthodes comme la technique de branchement ou de mesurer et conquérir
In this thesis, we are interested in the exact computation of np-hard problems on graphs and hypergraphs. Firstly, we study several variants of colorings. Those variants appear harder than the famous chromatic number problem, by adding difficulty in recognizing the color classes, or more often by introducing various relationships between them. Then we link to problems of transversals in hypergraphs. More precisely, we are interested in enumerating minimal transversals in bounded ranked hypergraphs. Besides the exact computation, we are also interested in fixed parameter tractability. For this area, we study two optimization versions of the famous square root of graphs problem. Finally, we will be interested in solving other problems of graphs related to colorings, or in order to compare efficiencies of algorithms depending on the memory space available. In this thesis, we will apply most of major techniques in designing exact exponential algorithms. The main techniques we use are dynamic programming, inclusion-exclusion, branching, or measure and conquer
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fradin, Julien. "Graphes complexes en biologie : problèmes, algorithmes et évaluations". Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4093/document.

Texto completo da fonte
Resumo:
Afin de mieux comprendre le fonctionnement d'un système biologique, il est nécessaire d'étudier les différentes entités qui le composent. Pour cela, on peut modéliser ces interactions biologiques sous la forme de graphes. Pour certains de ces graphes, les sommets sont colorés afin d'apporter une information supplémentaire sur la couleur qui leur est associée. Dans ce cadre, une problématique courante consiste à y rechercher un sous-graphe d'intérêt appelé motif. Dans la première partie de ce manuscrit, on présente un état de l'art d'un point de vue algorithmique sur le problème GRAPH MOTIF, qui consiste à rechercher des motifs dits fonctionnels dans ce type de graphes. La modélisation de systèmes biologiques sous la forme de graphes peut également être appliquée em spectrométrie de masse. Ainsi, on introduit le problème MAXIMUM COLORFUL ARBORESCENCE (MCA) dans le but de déterminer de novo la formule moléculaire de métabolites inconnus. Dans la deuxième partie de ce manuscrit, on réalise une étude algorithmique du problème MCA. Alors que MCA est algorithmiquement difficile à résoudre même dans des classes de graphes très contraintes, notre modélisation nous permet notamment d'obtenir de nouveaux algorithmes d'approximation dans ces mêmes classes, ainsi que de déterminer une nouvelle classe de graphes dans laquelle MCA se résout en temps polynomial. On montre également des résultats de complexité paramétrée pour ce problème, que l'on compare ensuite à ceux de la littérature sur des instances issues de données biologiques
Ln order to better understand how a biological system works, it is necessary to study the interactions between the different entities that compose it. To this aim, these biological interactions can be modelled in the form of graphs. ln some of these graphs, the vertices are colored in order to provide additional information on the entity which is associated with them. ln this context, a common subproblem consists in searching for a subgraph of interest, called a motif, in these graphs. ln the first part of this manuscript, we present a state of the art from an algorithmical point of view of the GRAPH MOTIF problem, which consists in searching for so-called functional motifs in vertex-colored graphs. The modeling of biological systems in graphs form can also be applied in mass spectrometry. Thus, we introduce the MAXIMUM COLORFUL ARBORESCENCE problem (MCA) in order to de novo determine the molecular formula of unknown metabolites. ln the second part of this manuscript, we carry out an algorithmic study of the MCA problem. While MCA is algorithmically difficult to solve even in very constrained graph classes, our modeling allows us to obtain new approximation algorithms in these same classes, as well as to determine a new graph class in which MCA is solved in polynomial time. Parameterized complexity results for this problem are also shown, which are then compared to those in the literature on instances from biological data
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chopin, Morgan. "Problèmes d'optimisation avec propagation dans les graphes : complexité paramétrée et approximation". Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00933769.

Texto completo da fonte
Resumo:
Dans cette thèse, nous étudions la complexité algorithmique de problèmes d'optimisation impliquant un processus de diffusion dans un graphe. Plus précisément, nous nous intéressons tout d'abord au problème de sélection d'un ensemble cible. Ce problème consiste à trouver le plus petit ensemble de sommets d'un graphe à "activer" au départ tel que tous les autres sommets soient activés après un nombre fini d'étapes de propagation. Si nous modifions ce processus en permettant de "protéger" un sommet à chaque étape, nous obtenons le problème du pompier dont le but est de minimiser le nombre total de sommets activés en protégeant certains sommets. Dans ce travail, nous introduisons et étudions une version généralisée de ce problème dans laquelle plus d'un sommet peut être protégé à chaque étape. Nous proposons plusieurs résultats de complexité pour ces problèmes à la fois du point de vue de l'approximation mais également de la complexité paramétrée selon des paramètres standards ainsi que des paramètres liés à la structure du graphe.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Duvillié, Guillerme. "Approximation, complexité paramétrée et stratégies de résolution de problèmes d'affectation multidimensionnelle". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT321/document.

Texto completo da fonte
Resumo:
Au cours de la thèse, nous nous sommes intéressés aux problèmes d'empilement de wafers. Ces problèmes apparaissent lors de la fabrication de processeurs en 3 dimensions. Au cours du processus de fabrication, les puces électroniques doivent être empilées les unes sur les autres. Jusqu'à peu, ces dernières, une fois gravées sur des plaques de silicium appelées wafers, étaient découpées, puis triées afin d'écarter les puces défectueuses et enfin assemblées les unes entre elles.Cependant empiler les wafers plutôt que les puces présente de nombreux avantages techniques et financiers. Naturellement, étant impossible d'écarter les puces défectueuses sans découper la plaque de silice, le problème de la superposition d'une puce viable avec une puce défectueuse se pose. Une pile de puces, étant considérées comme défectueuse si elle contient ne serait-ce qu'une puce défectueuse, la superposition non réfléchie des wafers entre eux mènerait à un rendement désastreux.Afin de générer un nombre minimum de piles défectueuses, une "cartographie" de chaque wafer candidat à la superposition est réalisée lors d'une phase de test, permettant de situer les puces défectueuses sur le wafer. Une fois cette cartographie réalisée, l'objectif est de sélectionner les wafers qui seront assemblés ensembles de manière à faire correspondre les défauts de chacun des wafers.Ce problème peut être modélisé à l'aide d'un problème d'affectation multidimensionnelle. Chaque wafer est représenté par un vecteur comportant autant de composantes que de puces sur le wafer qu'il représente. Une composante égale à zéro matérialise une puce défectueuse tandis qu'un un matérialise une puce viable. Chaque lot de wafers est représenté par un lot de vecteurs. Formellement, une instance d'empilement de wafers est représenté par m ensembles de n vecteurs binaires p-dimensionnels. L'objectif est alors de réaliser n m-uplets disjoints contenant exactement un vecteur par ensemble. Ces m-uplets représenteront les piles. Chaque m-uplet peut être représenté par un vecteur binaire p-dimensionnels, chaque composante étant calculée en réalisant le ET binaire des composantes correspondantes des vecteurs qui composent le m-uplet. Autrement dit, une composante du vecteur représentant le m-uplet est égale à un si et seulement si tous les vecteurs ont cette composante égale à un. Et donc une pile de puces est viables si toutes les puces qui la composent sont viables. L'objectif est alors de minimiser le nombre de zéros ou de maximiser le nombre de un.La thèse comporte deux grandes parties. Une partie théorique abordant la complexité des différentes versions du problèmes en fonction de certains paramètres tels que m, n, p ou encore le nombre maximum de zéros par vecteurs. Nous montrons entre autre que ces problèmes peuvent être utilisés pour modéliser des problèmes plus classiques tels que Maximum Clique, Minimum Vertex Cover ou encore k-Dimensional Matching, permettant de prouver un certain nombre de résultats négatifs que ce soit d'un point de vue de la complexité classique, l'approximabilité ou la complexité paramétrée. Nous fournissons également des résultats positifs pour des cas particuliers du problème.Dans un second temps, nous nous intéressons à la résolution pratique du problème en fournissant et comparant un certain nombre de formulations en Programmation Linéaire en Nombres Entiers. Mais nous nous intéressons également aux performances en pratique de certaines heuristiques à garantie de performances détaillées dans la partie théorique
In this thesis, we focused in the Wafer-to-Wafer integration problems. These problems come from IC manufacturing. During the production of three-dimensional processors, dies have to be superimposed. Until recent, the dies were engraved on a silicon disk called wafer, then were cut, tested and sorted to suppress faulty dies and lastly superimposed one to each other.However superimposing wafers instead of dies presents several technical and financial advantages. Since faulty dies can only be dismissed when cutting the wafer, superimpose two wafers can lead to superimpose a faulty die with a viable one. In this case, the resulting stack of dies is considered as faulty. It follows that a bad assignment between the wafers can lead to a disastrous yield.In order to minimize the number of faulty dies stacks, a "failure map" of each wafer is generated during a test phase. This map gives location of the faulty dies on the wafers. The objective is then to take advantage of this map to define an assignment of the wafers to each other in order to match as many failures as possible.This problem can be modelized with Multidimensional Assignment problems. Each wafer can be seen as a vector with as many dimensions as the number of dies engraved on it. A coordinate set to zero marks a faulty die while a coordinate set to one indicates a viable one. Each seat of wafers is represented by a set of vector. Formally, an instance of a Wafer-to-Wafer integration problem is represented by m sets of n p-dimensional vectors. The objective is then to partition the vectors into n disjoint m-tuples, each tuple containing exactly one vector per set. An m-tuple represents a stack of wafers. Every m-tuple can be represented by a p-dimensional vector. Each coordinate is computed by performing the bitwise AND between the corresponding coordinates of the vectors that compose the m-tuple. In other words, a coordinate of the representative vector is equal to one if and only if this coordinate is equal to one in every vector composing the tuple. It follows that a dies stack is viable if and only if all the dies composing the stack are viable. The objective is then to maximize the overall number of ones of to minimize the overall number of zeros.The first part of the thesis is a theoretical one. We study the complexity of the considered versions of the problem with regards to natural parameters such as m, n, p or the number of zeros per vector. We show that these problems can encode more classical problems such as Maximum Clique, Minimum Vertex Cover or k-Dimensional Matching. This leads to several negative results from computational complexity, approximability or even parameterized complexity point of view. We also provide several positive results for some specific cases of the problem.In a second part, we focus on the practical solving of the problem. We provide and compare several Integer Linear Programming formulations. We also focus on performances of some approximation algorithms that we detailed in the theoretical part
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Problèmes paramétrés"

1

Duflos, Emmanuel. Estimation prédiction: Éléments de cours et exercices résolus. Paris: Éditions Technip, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia