Literatura científica selecionada sobre o tema "Probability theory"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Probability theory".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Probability theory"
Thun, M. von. "Probability Theory and Probability Semantics". Australasian Journal of Philosophy 79, n.º 4 (dezembro de 2001): 570–71. http://dx.doi.org/10.1080/713659287.
Texto completo da fonteKiessler, Peter C. "Measure Theory and Probability Theory". Journal of the American Statistical Association 102, n.º 479 (setembro de 2007): 1078. http://dx.doi.org/10.1198/jasa.2007.s207.
Texto completo da fonteBerckmoes, B., R. Lowen e J. Van Casteren. "Approach theory meets probability theory". Topology and its Applications 158, n.º 7 (abril de 2011): 836–52. http://dx.doi.org/10.1016/j.topol.2011.01.004.
Texto completo da fonteLindley, D. V., e Harold Jeffreys. "Theory of Probability". Mathematical Gazette 83, n.º 497 (julho de 1999): 372. http://dx.doi.org/10.2307/3619118.
Texto completo da fonteGuionnet, Alice, Roland Speicher e Dan-Virgil Voiculescu. "Free Probability Theory". Oberwolfach Reports 12, n.º 2 (2015): 1571–629. http://dx.doi.org/10.4171/owr/2015/28.
Texto completo da fonteGuionnet, Alice, Roland Speicher e Dan-Virgil Voiculescu. "Free Probability Theory". Oberwolfach Reports 15, n.º 4 (16 de dezembro de 2019): 3147–215. http://dx.doi.org/10.4171/owr/2018/53.
Texto completo da fonteBhat, B. R. "Modern Probability Theory." Biometrics 42, n.º 4 (dezembro de 1986): 1007. http://dx.doi.org/10.2307/2530732.
Texto completo da fonteJeffreys, H., P. A. P. Moran e C. Chatfield. "Theory of Probability." Biometrics 41, n.º 2 (junho de 1985): 597. http://dx.doi.org/10.2307/2530899.
Texto completo da fonteSpeicher, Roland. "Free Probability Theory". Jahresbericht der Deutschen Mathematiker-Vereinigung 119, n.º 1 (15 de setembro de 2016): 3–30. http://dx.doi.org/10.1365/s13291-016-0150-5.
Texto completo da fonteMTW e Harold Jeffreys. "Theory of Probability". Journal of the American Statistical Association 94, n.º 448 (dezembro de 1999): 1389. http://dx.doi.org/10.2307/2669965.
Texto completo da fonteTeses / dissertações sobre o assunto "Probability theory"
Halliwell, Joe. "Linguistic probability theory". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29135.
Texto completo da fonteYoumbi, Norbert. "Probability theory on semihypergroups". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001201.
Texto completo da fonteSorokin, Yegor. "Probability theory, fourier transform and central limit theorem". Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1604.
Texto completo da fonteJohns, Richard. "A theory of physical probability". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0027/NQ38907.pdf.
Texto completo da fontePerlin, Alex 1974. "Probability theory on Galton-Watson trees". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8673.
Texto completo da fonteIncludes bibliographical references (p. 91).
By a Galton-Watson tree T we mean an infinite rooted tree that starts with one node and where each node has a random number of children independently of the rest of the tree. In the first chapter of this thesis, we prove a conjecture made in [7] for Galton-Watson trees where vertices have bounded number of children not equal to 1. The conjecture states that the electric conductance of such a tree has a continuous distribution. In the second chapter, we study rays in Galton-Watson trees. We establish what concentration of vertices with is given number of children is possible along a ray in a typical tree. We also gauge the size of the collection of all rays with given concentrations of vertices of given degrees.
by Alex Perlin.
Ph.D.
Wang, Jiun-Chau. "Limit theorems in noncommutative probability theory". [Bloomington, Ind.] : Indiana University, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3331258.
Texto completo da fonteTitle from PDF t.p. (viewed on Jul 27, 2009). Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6852. Adviser: Hari Bercovici.
Burns, Jonathan. "Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.
Texto completo da fonteChristopher, Fisher Ryan. "Are people naive probability theorists? An examination of the probability theory + variation model". Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1406657670.
Texto completo da fonteTarrago, Pierre. "Non-commutative generalization of some probabilistic results from representation theory". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1123/document.
Texto completo da fonteThe subject of this thesis is the non-commutative generalization of some probabilistic results that occur in representation theory. The results of the thesis are divided into three different parts. In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner spaces are described by non-crossing partitions, and develop the Weingarten calculus on these quantum groups. As an application of the previous work, we recover the results of Diaconis and Shahshahani on the unitary group and extend those results to the free unitary group. In the second part of the thesis, we study the free wreath product. First, we study the free wreath product with the free symmetric group by giving a description of the intertwiner spaces: several probabilistic results are deduced from this description. Then, we relate the intertwiner spaces of a free wreath product with the free product of planar algebras, an object which has been defined by Bisch and Jones. This relation allows us to prove the conjecture of Banica and Bichon. In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise estimates on the uniform standard filling of a large ribbon Young diagram. This yields several asymptotic results on the filling of large ribbon Young diagrams
McGillivray, Ivor Edward. "Some applications of Dirichlet forms in probability theory". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241102.
Texto completo da fonteLivros sobre o assunto "Probability theory"
Meyer, Paul André. Quantum probability for probabilists. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fonteChen, Louis H. Y., Kwok P. Choi, Kaiyuan Hu e Lou Jiann-Hua, eds. Probability Theory. Berlin, Boston: DE GRUYTER, 1992. http://dx.doi.org/10.1515/9783110862829.
Texto completo da fonteRudas, Tamás. Probability Theory. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2004. http://dx.doi.org/10.4135/9781412985482.
Texto completo da fonteSinai, Yakov G. Probability Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02845-2.
Texto completo da fonteChow, Yuan Shih, e Henry Teicher. Probability Theory. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-0504-0.
Texto completo da fonteHendricks, Vincent F., Stig Andur Pedersen e Klaus Frovin Jørgensen, eds. Probability Theory. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9648-0.
Texto completo da fonteKlenke, Achim. Probability Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5.
Texto completo da fontePakshirajan, R. P. Probability Theory. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-54-5.
Texto completo da fonteChow, Yuan Shih, e Henry Teicher. Probability Theory. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1950-7.
Texto completo da fonteBorkar, Vivek S. Probability Theory. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0791-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Probability theory"
O’Hagan, Anthony. "Distribution theory". In Probability, 132–56. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1211-3_6.
Texto completo da fonteCohn, Donald L. "Probability". In Measure Theory, 307–71. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6956-8_10.
Texto completo da fonteLynch, Scott M. "Probability Theory". In Using Statistics in Social Research, 57–81. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8573-5_5.
Texto completo da fonteKoch, Karl-Rudolf. "Probability Theory". In Parameter Estimation and Hypothesis Testing in Linear Models, 87–173. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-02544-4_3.
Texto completo da fonteČepin, Marko. "Probability Theory". In Assessment of Power System Reliability, 33–57. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_4.
Texto completo da fonteLista, Luca. "Probability Theory". In Statistical Methods for Data Analysis in Particle Physics, 1–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62840-0_1.
Texto completo da fonteDurrett, Rick. "Probability Theory". In Mathematics Unlimited — 2001 and Beyond, 393–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_18.
Texto completo da fonteStroock, Daniel W. "Probability Theory". In Mathematics Unlimited — 2001 and Beyond, 1105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_57.
Texto completo da fonteSucar, Luis Enrique. "Probability Theory". In Probabilistic Graphical Models, 15–26. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_2.
Texto completo da fonteYao, Kai. "Probability Theory". In Uncertain Renewal Processes, 1–25. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9345-7_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Probability theory"
Temlyakov, V. N. "Optimal estimators in learning theory". In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Texto completo da fonteHelland, Inge S. "Quantum theory as a statistical theory under symmetry". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874567.
Texto completo da fonteGudder, Stan. "Fuzzy Quantum Probability Theory". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874565.
Texto completo da fontePleśniak, W. "Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods". In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-16.
Texto completo da fonteChiribella, G., G. M. D'Ariano e Paolo Perinotti. "Informational axioms for quantum theory". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688980.
Texto completo da fontePérez-Suárez, Marcos. "Bayesian Intersubjectivity and Quantum Theory". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874582.
Texto completo da fonteWoesler, Richard. "Problems of Quantum Theory may be Solved by an Emulation Theory of Quantum Physics". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874589.
Texto completo da fonteVacchini, B. "A Probabilistic View on Decoherence Theory". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713491.
Texto completo da fonteSverdlov, Roman. "Quantum field theory without Fock space". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688986.
Texto completo da fonteGregory, Lee. "Quantum Filtering Theory and the Filtering Interpretation". In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874562.
Texto completo da fonteRelatórios de organizações sobre o assunto "Probability theory"
Hurley, Michael B. Track Association with Bayesian Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2003. http://dx.doi.org/10.21236/ada417987.
Texto completo da fonteGoodman, I. R., e V. M. Bier. A Re-Examination of the Relationship between Fuzzy Set Theory and Probability Theory. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1991. http://dx.doi.org/10.21236/ada240243.
Texto completo da fonteSteele, J. M. Probability and Statistics Applied to the Theory of Algorithms. Fort Belvoir, VA: Defense Technical Information Center, abril de 1995. http://dx.doi.org/10.21236/ada295805.
Texto completo da fonteSullivan, Keith M., e Ian Grivell. QSIM: A Queueing Theory Model with Various Probability Distribution Functions. Fort Belvoir, VA: Defense Technical Information Center, março de 2003. http://dx.doi.org/10.21236/ada414471.
Texto completo da fonteOberkampf, William Louis, W. Troy Tucker, Jianzhong Zhang, Lev Ginzburg, Daniel J. Berleant, Scott Ferson, Janos Hajagos e Roger B. Nelsen. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Office of Scientific and Technical Information (OSTI), outubro de 2004. http://dx.doi.org/10.2172/919189.
Texto completo da fonteWise, Gary L. Some Applications of Probability and Statistics in Communication Theory and Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1990. http://dx.doi.org/10.21236/ada226869.
Texto completo da fonteIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, dezembro de 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Texto completo da fonteBudhiraja, Amarjit. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis. Fort Belvoir, VA: Defense Technical Information Center, julho de 2015. http://dx.doi.org/10.21236/ada625850.
Texto completo da fonteKott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, agosto de 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.
Texto completo da fonteZio, Enrico, e Nicola Pedroni. Literature review of methods for representing uncertainty. Fondation pour une culture de sécurité industrielle, dezembro de 2013. http://dx.doi.org/10.57071/124ure.
Texto completo da fonte