Literatura científica selecionada sobre o tema "Probabilistic μ-Analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Probabilistic μ-Analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Probabilistic μ-Analysis"
Chakraborty, Uday Kumar, Kalyanmoy Deb e Mandira Chakraborty. "Analysis of Selection Algorithms: A Markov Chain Approach". Evolutionary Computation 4, n.º 2 (junho de 1996): 133–67. http://dx.doi.org/10.1162/evco.1996.4.2.133.
Texto completo da fonteField, R. V., P. G. Voulgaris e L. A. Bergman. "Methods to Compute Probabilistic Measures of Robustness for Structural Systems". Journal of Vibration and Control 2, n.º 4 (outubro de 1996): 447–63. http://dx.doi.org/10.1177/107754639600200405.
Texto completo da fontePinus, B. I., I. G. Korneeva e V. D. Balheeva. "Fatigue life of bending reinforced concrete elements with fibre-reinforced matrices". Journal «Izvestiya vuzov. Investitsiyi. Stroyitelstvo. Nedvizhimost» 12, n.º 3 (2022): 362–67. http://dx.doi.org/10.21285/2227-2917-2022-3-362-367.
Texto completo da fonteMussardo, Giuseppe, e André LeClair. "Randomness of Möbius coefficients and Brownian motion: growth of the Mertens function and the Riemann hypothesis". Journal of Statistical Mechanics: Theory and Experiment 2021, n.º 11 (1 de novembro de 2021): 113106. http://dx.doi.org/10.1088/1742-5468/ac22fb.
Texto completo da fonteGvozdarev, Aleksey, e Pavel Patralov. "PROBABILISTIC ANALYSIS OF GENERALISED STATISTIC MODEL FOR MULTIPATH CHANNEL OF SIMO SISTEMS WITH FADING AND CORRELATED SHADOWING". Informatics and Automation 20, n.º 3 (28 de maio de 2021): 727–49. http://dx.doi.org/10.15622/ia.2021.3.8.
Texto completo da fonteVolkov, Serhiy, Yuliia Simonova, Anton Korol, Yevgen Podkopayev, Oleksiy Kayun e Oleksandr Tkachuk. "STRUCTURING EXPERIMENTAL DATA ON THE PERFORMANCE OF ARCH SUPPORTS FOR PROBABILISTIC ASSESSMENT OF THE STATE OF RETRACTABLE DRIFTS". JOURNAL of Donetsk Mining Institute, n.º 1 (2022): 16–31. http://dx.doi.org/10.31474/1999-981x-2022-1-16-31.
Texto completo da fonteFalcoz, Alexandre, Daniel Alazard e Christelle Pittet. "Probabilistic μ-analysis for system performances assessment. * *This work has been done in the scope of a CNES R&D activity cojointly funded by Airbus Defence and Space and CNES, Toulouse." IFAC-PapersOnLine 50, n.º 1 (julho de 2017): 399–404. http://dx.doi.org/10.1016/j.ifacol.2017.08.181.
Texto completo da fonteOstermeyer, Georg-Peter, Michael Müller, Stephan Brumme e Tarin Srisupattarawanit. "Stability Analysis with an NVH Minimal Model for Brakes under Consideration of Polymorphic Uncertainty of Friction". Vibration 2, n.º 1 (6 de março de 2019): 135–56. http://dx.doi.org/10.3390/vibration2010009.
Texto completo da fonteLiu, Yuqi, Xuehua Li e Huan Li. "N-Widths of Multivariate Sobolev Spaces with Common Smoothness in Probabilistic and Average Settings in the Sq Norm". Axioms 12, n.º 7 (17 de julho de 2023): 698. http://dx.doi.org/10.3390/axioms12070698.
Texto completo da fonteLiu, Yuqi, Huan Li e Xuehua Li. "Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure". Axioms 12, n.º 9 (22 de agosto de 2023): 804. http://dx.doi.org/10.3390/axioms12090804.
Texto completo da fonteTeses / dissertações sobre o assunto "Probabilistic μ-Analysis"
Somers, Franca Maria Emma. "Nouveaux outils probabilistes pour améliorer la vérification et la validation des systèmes de contrôle spatiaux". Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0054.
Texto completo da fonteCurrent verification and validation (V&V) activities in aerospace industry mostly rely on time-consuming simulation-based tools. These classical Monte Carlo approaches have been widely used for decades to assess performance of Guidance, Navigation and Control (GNC) algorithms and Attitude and Orbit Control Systems (AOCS) containing multiple uncertain parameters. They are able to quantify the probability of sufficiently frequent phenomena, but they may fail in detecting rare but critical combinations of parameters. As the complexity of modern space systems increases, this limitation plays an ever more important role. In recent years, model-based worst-case analysis methods have reached a good level of maturity. Without the need of simulations, these tools can fully explore the space of all possible combinations of uncertain parameters and provide guaranteed mathematical bounds on robust stability margins and worst-case performance levels. Problematic parameter configurations, identified using these methods, can be used to guide the final Monte Carlo campaigns, thereby drastically shortening the standard V&V process. A limitation of classical model-based worst-case analysis methods is that they assume the uncertain parameters can take any value within a given range with equal probability. The probability of occurrence of a worst-case parameter combination is thus not measured and a control architecture can be rejected based on a very rare and extremely unlikely scenario. This PhD research makes advances in probabilistic μ-analysis to develop new efficient and reliable tools to improve the characterization of rare but nonetheless possible events. This to tighten the aforementioned V&V analysis gap between simulation-based methods and deterministic model-based worst-case approaches
Capítulos de livros sobre o assunto "Probabilistic μ-Analysis"
Hausmann, Daniel, e Lutz Schröder. "Quasipolynomial Computation of Nested Fixpoints". In Tools and Algorithms for the Construction and Analysis of Systems, 38–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Probabilistic μ-Analysis"
Somers, Franca, Clément Roos, Francesco Sanfedino, Samir Bennani e Valentin Preda. "A μ-analysis based approach to probabilistic delay margin analysis of uncertain linear systems*". In 2023 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2023. http://dx.doi.org/10.1109/ccta54093.2023.10253108.
Texto completo da fonteFranca Somers, Miss, Clément Roos, Francesco Sanfedino, Samir Bennani e Valentin Preda. "Probabilistic stability margins and their application to AOCS validation". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-089.
Texto completo da fonteEvain, Hélène, Tommaso Casati, Clément Roos e Jean-Marc Biannic. "Attitude control laws validation through probabilistic µ-analysis : application to a microsatellite control laws". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-058.
Texto completo da fonteMartin, Maurice, Stefan Winkler e Frederik Belien. "Towards New V&V in AOCS/GNC for Industrial Efficiency". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-171.
Texto completo da fonte