Artigos de revistas sobre o tema "Private Data Analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Private Data Analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shi, Elaine, T. H. Hubert Chan, Eleanor Rieffel e Dawn Song. "Distributed Private Data Analysis". ACM Transactions on Algorithms 13, n.º 4 (21 de dezembro de 2017): 1–38. http://dx.doi.org/10.1145/3146549.
Texto completo da fonteAbdul Manap, Nazura, Mohamad Rizal Abd Rahman e Siti Nur Farah Atiqah Salleh. "HEALTH DATA OWNERSHIP IN MALAYSIA PUBLIC AND PRIVATE HEALTHCARE: A LEGAL ANALYSIS OF HEALTH DATA PRIVACY IN THE AGE OF BIG DATA". International Journal of Law, Government and Communication 7, n.º 30 (31 de dezembro de 2022): 33–41. http://dx.doi.org/10.35631/ijlgc.730004.
Texto completo da fonteDwork, Cynthia, Frank McSherry, Kobbi Nissim e Adam Smith. "Calibrating Noise to Sensitivity in Private Data Analysis". Journal of Privacy and Confidentiality 7, n.º 3 (30 de maio de 2017): 17–51. http://dx.doi.org/10.29012/jpc.v7i3.405.
Texto completo da fonteProserpio, Davide, Sharon Goldberg e Frank McSherry. "Calibrating data to sensitivity in private data analysis". Proceedings of the VLDB Endowment 7, n.º 8 (abril de 2014): 637–48. http://dx.doi.org/10.14778/2732296.2732300.
Texto completo da fonteMandal, Sanjeev Kumar, Amit Sharma, Santosh Kumar Henge, Sumaira Bashir, Madhuresh Shukla e Asim Tara Pathak. "Secure data encryption key scenario for protecting private data security and privacy". Journal of Discrete Mathematical Sciences and Cryptography 27, n.º 2 (2024): 269–81. http://dx.doi.org/10.47974/jdmsc-1881.
Texto completo da fonteAppenzeller, Arno, Moritz Leitner, Patrick Philipp, Erik Krempel e Jürgen Beyerer. "Privacy and Utility of Private Synthetic Data for Medical Data Analyses". Applied Sciences 12, n.º 23 (1 de dezembro de 2022): 12320. http://dx.doi.org/10.3390/app122312320.
Texto completo da fonteLobo-Vesga, Elisabet, Alejandro Russo e Marco Gaboardi. "A Programming Language for Data Privacy with Accuracy Estimations". ACM Transactions on Programming Languages and Systems 43, n.º 2 (julho de 2021): 1–42. http://dx.doi.org/10.1145/3452096.
Texto completo da fonteDwork, Cynthia. "A firm foundation for private data analysis". Communications of the ACM 54, n.º 1 (janeiro de 2011): 86–95. http://dx.doi.org/10.1145/1866739.1866758.
Texto completo da fonteBos, Joppe W., Kristin Lauter e Michael Naehrig. "Private predictive analysis on encrypted medical data". Journal of Biomedical Informatics 50 (agosto de 2014): 234–43. http://dx.doi.org/10.1016/j.jbi.2014.04.003.
Texto completo da fonteAher, Ujjwala Bal, Amol A. Bhosle, Prachi Palsodkar, Swati Bula Patil, Nishchay Koul e Purva Mange. "Secure data sharing in collaborative network environments for privacy-preserving mechanisms". Journal of Discrete Mathematical Sciences and Cryptography 27, n.º 2-B (2024): 855–65. http://dx.doi.org/10.47974/jdmsc-1961.
Texto completo da fonteSramka, Michal. "Data mining as a tool in privacy-preserving data publishing". Tatra Mountains Mathematical Publications 45, n.º 1 (1 de dezembro de 2010): 151–59. http://dx.doi.org/10.2478/v10127-010-0011-z.
Texto completo da fonteCho, Cheol-kyu. "Big Data Analysis Research on Private Investigation Systems". K Association of Education Research 8, n.º 3 (30 de setembro de 2023): 273–87. http://dx.doi.org/10.48033/jss.8.3.15.
Texto completo da fonteZhu, Tianqing, Gang Li, Wanlei Zhou e Philip S. Yu. "Differentially Private Data Publishing and Analysis: A Survey". IEEE Transactions on Knowledge and Data Engineering 29, n.º 8 (1 de agosto de 2017): 1619–38. http://dx.doi.org/10.1109/tkde.2017.2697856.
Texto completo da fonteHamza, Rafik, Alzubair Hassan, Awad Ali, Mohammed Bakri Bashir, Samar M. Alqhtani, Tawfeeg Mohmmed Tawfeeg e Adil Yousif. "Towards Secure Big Data Analysis via Fully Homomorphic Encryption Algorithms". Entropy 24, n.º 4 (6 de abril de 2022): 519. http://dx.doi.org/10.3390/e24040519.
Texto completo da fonteOyekan, Basirat. "DEVELOPING PRIVACY-PRESERVING FEDERATED LEARNING MODELS FOR COLLABORATIVE HEALTH DATA ANALYSIS ACROSS MULTIPLE INSTITUTIONS WITHOUT COMPROMISING DATA SECURITY". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 3, n.º 3 (25 de agosto de 2024): 139–64. http://dx.doi.org/10.60087/jklst.vol3.n3.p139-164.
Texto completo da fonteMiranda-Pascual, Àlex, Patricia Guerra-Balboa, Javier Parra-Arnau, Jordi Forné e Thorsten Strufe. "SoK: Differentially Private Publication of Trajectory Data". Proceedings on Privacy Enhancing Technologies 2023, n.º 2 (abril de 2023): 496–516. http://dx.doi.org/10.56553/popets-2023-0065.
Texto completo da fonteFerrara, Pietro, Luca Olivieri e Fausto Spoto. "Static Privacy Analysis by Flow Reconstruction of Tainted Data". International Journal of Software Engineering and Knowledge Engineering 31, n.º 07 (julho de 2021): 973–1016. http://dx.doi.org/10.1142/s0218194021500303.
Texto completo da fonteShen, Wenquan, Shuhui Wu e Yuanhong Tao. "CLDP-pFedAvg: Safeguarding Client Data Privacy in Personalized Federated Averaging". Mathematics 12, n.º 22 (20 de novembro de 2024): 3630. http://dx.doi.org/10.3390/math12223630.
Texto completo da fonteLi, Bing, Hong Zhu e Meiyi Xie. "Releasing Differentially Private Trajectories with Optimized Data Utility". Applied Sciences 12, n.º 5 (25 de fevereiro de 2022): 2406. http://dx.doi.org/10.3390/app12052406.
Texto completo da fonteAL-Mafrji, Ahmad Abdullah Mohammed, e Ahmed Burhan Mohammed. "Analysis of Patients Data Using Fuzzy Expert System". Webology 19, n.º 1 (20 de janeiro de 2022): 4027–34. http://dx.doi.org/10.14704/web/v19i1/web19265.
Texto completo da fonteXu, Xiaolong, Xuan Zhao, Feng Ruan, Jie Zhang, Wei Tian, Wanchun Dou e Alex X. Liu. "Data Placement for Privacy-Aware Applications over Big Data in Hybrid Clouds". Security and Communication Networks 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/2376484.
Texto completo da fonteJi, Tianxi, Pan Li, Emre Yilmaz, Erman Ayday, Yanfang (Fanny) Ye e Jinyuan Sun. "Differentially private binary- and matrix-valued data query". Proceedings of the VLDB Endowment 14, n.º 5 (janeiro de 2021): 849–62. http://dx.doi.org/10.14778/3446095.3446106.
Texto completo da fonteAriful Islam, Md, e Rezwanul Hasan Rana. "Determinants of bank profitability for the selected private commercial banks in Bangladesh: a panel data analysis". Banks and Bank Systems 12, n.º 3 (18 de outubro de 2017): 179–92. http://dx.doi.org/10.21511/bbs.12(3-1).2017.03.
Texto completo da fonteAL-SAGGAF, YESLAM. "The Use of Data Mining by Private Health Insurance Companies and Customers’ Privacy". Cambridge Quarterly of Healthcare Ethics 24, n.º 3 (10 de junho de 2015): 281–92. http://dx.doi.org/10.1017/s0963180114000607.
Texto completo da fonteAvella-Medina, Marco. "The Role of Robust Statistics in Private Data Analysis". CHANCE 33, n.º 4 (1 de outubro de 2020): 37–42. http://dx.doi.org/10.1080/09332480.2020.1847958.
Texto completo da fonteUtaliyeva, Assem, e Yoon-Ho Choi. "Two-Fold Differentially Private Mechanism for Big Data Analysis". Journal of Korean Institute of Communications and Information Sciences 49, n.º 3 (31 de março de 2024): 393–400. http://dx.doi.org/10.7840/kics.2024.49.3.393.
Texto completo da fonteChunxia Wang, Chunxia Wang, Qiuyu Zhang Chunxia Wang e Yan Yan Qiuyu Zhang. "Differentially Private Feature Selection Based on Dynamic Relevance for Correlated Data". 電腦學刊 34, n.º 1 (fevereiro de 2023): 157–73. http://dx.doi.org/10.53106/199115992023023401012.
Texto completo da fonteBatool, Sumaira, Imran Abbs, Fatima Farooq e Ishtiaq Ahmad. "Comparative Efficiency Analysis of Public and Private Colleges of Multan District: Data Envelope Approach Analysis". Review of Economics and Development Studies 2, n.º 1 (30 de junho de 2016): 69–80. http://dx.doi.org/10.26710/reads.v2i1.125.
Texto completo da fonteChen, Z. F., J. J. Shuai, F. J. Tian, W. Y. Li, S. H. Zang e X. Z. Zhang. "An Improved Privacy Protection Algorithm for Multimodal Data Fusion". Scientific Programming 2022 (23 de agosto de 2022): 1–7. http://dx.doi.org/10.1155/2022/4189148.
Texto completo da fonteZhang, Hao, Yewei Xia, Yixin Ren, Jihong Guan e Shuigeng Zhou. "Differentially Private Nonlinear Causal Discovery from Numerical Data". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 10 (26 de junho de 2023): 12321–28. http://dx.doi.org/10.1609/aaai.v37i10.26452.
Texto completo da fonteKang, Shujing, Xia Lin, Kaiqi Yang, Jianing Sun e Daiteng Ren. "Data Elements Empowering Breakthrough Innovation Enterprises: A Current Analysis and Improvement Pathways". Journal of Management and Social Development 1, n.º 3 (maio de 2024): 221–26. http://dx.doi.org/10.62517/jmsd.202412332.
Texto completo da fontede Jong, Jins, Bart Kamphorst e Shannon Kroes. "Differentially Private Block Coordinate Descent for Linear Regression on Vertically Partitioned Data". Journal of Cybersecurity and Privacy 2, n.º 4 (9 de novembro de 2022): 862–81. http://dx.doi.org/10.3390/jcp2040044.
Texto completo da fonteJia, Dongning, Bo Yin e Xianqing Huang. "Association Analysis of Private Information in Distributed Social Networks Based on Big Data". Wireless Communications and Mobile Computing 2021 (4 de junho de 2021): 1–12. http://dx.doi.org/10.1155/2021/1181129.
Texto completo da fonteSwanberg, Marika, Ira Globus-Harris, Iris Griffith, Anna Ritz, Adam Groce e Andrew Bray. "Improved Differentially Private Analysis of Variance". Proceedings on Privacy Enhancing Technologies 2019, n.º 3 (1 de julho de 2019): 310–30. http://dx.doi.org/10.2478/popets-2019-0049.
Texto completo da fontePeng, Shin-yi. "Public–Private Interactions in Privacy Governance". Laws 11, n.º 6 (26 de outubro de 2022): 80. http://dx.doi.org/10.3390/laws11060080.
Texto completo da fonteMayuri Arun Gaikwad. "Homomorphic Encryption and Secure Multi-Party Computation: Mathematical Tools for Privacy-Preserving Data Analysis in the Cloud". Panamerican Mathematical Journal 33, n.º 2 (4 de julho de 2024): 75–88. http://dx.doi.org/10.52783/pmj.v33.i2.876.
Texto completo da fonteBasha, M. John, T. Satyanarayana Murthy, A. S. Valarmathy, Ahmed Radie Abbas, Djuraeva Gavhar, R. Rajavarman e N. Parkunam. "Privacy-Preserving Data Mining and Analytics in Big Data". E3S Web of Conferences 399 (2023): 04033. http://dx.doi.org/10.1051/e3sconf/202339904033.
Texto completo da fonteWood, Alexander, Vladimir Shpilrain, Kayvan Najarian e Delaram Kahrobaei. "Private naive bayes classification of personal biomedical data: Application in cancer data analysis". Computers in Biology and Medicine 105 (fevereiro de 2019): 144–50. http://dx.doi.org/10.1016/j.compbiomed.2018.11.018.
Texto completo da fonteBălă, Raluca-Maria, e Elena-Maria Prada. "Migration and Private Consumption in Europe: A Panel Data Analysis". Procedia Economics and Finance 10 (2014): 141–49. http://dx.doi.org/10.1016/s2212-5671(14)00287-1.
Texto completo da fonteJiang, Yangdi, Yi Liu, Xiaodong Yan, Anne-Sophie Charest, Linglong Kong e Bei Jiang. "Analysis of Differentially Private Synthetic Data: A Measurement Error Approach". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de março de 2024): 21206–13. http://dx.doi.org/10.1609/aaai.v38i19.30114.
Texto completo da fonteXing, Hongjun, e Darchia Maia. "Analysis on the Development Strategy of Private Education Based on Data Mining Algorithm". Mathematical Problems in Engineering 2022 (11 de julho de 2022): 1–10. http://dx.doi.org/10.1155/2022/2783398.
Texto completo da fonteDE CAPITANI DI VIMERCATI, SABRINA, SARA FORESTI, GIOVANNI LIVRAGA e PIERANGELA SAMARATI. "DATA PRIVACY: DEFINITIONS AND TECHNIQUES". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, n.º 06 (dezembro de 2012): 793–817. http://dx.doi.org/10.1142/s0218488512400247.
Texto completo da fonteLi, Yanshu, e Daowei Zhang. "A Spatial Panel Data Analysis of Tree Planting in the US South". Southern Journal of Applied Forestry 31, n.º 4 (1 de novembro de 2007): 192–98. http://dx.doi.org/10.1093/sjaf/31.4.192.
Texto completo da fonteLi, Yiwei, Shuai Wang e Qilong Wu. "Convergence Analysis for Differentially Private Federated Averaging in Heterogeneous Settings". Mathematics 13, n.º 3 (2 de fevereiro de 2025): 497. https://doi.org/10.3390/math13030497.
Texto completo da fonteHasan, Fayyad-Kazan, Kassem-Moussa Sondos, Hejase Hussin J e Hejase Ale J. "Forensic analysis of private browsing mechanisms: Tracing internet activities". Journal of Forensic Science and Research 5, n.º 1 (8 de março de 2021): 012–19. http://dx.doi.org/10.29328/journal.jfsr.1001022.
Texto completo da fonteBalaine, Lorraine, Cathal Buckley e Emma J. Dillon. "Mixed public-private and private extension systems: A comparative analysis using farm-level data from Ireland". Land Use Policy 117 (junho de 2022): 106086. http://dx.doi.org/10.1016/j.landusepol.2022.106086.
Texto completo da fonteLiu, Haifei, Weishu Li e Yulian Liu. "Research on the Integration of Data Statistics and Analysis in the Training of Private Equity Talents". Scientific Journal of Economics and Management Research 6, n.º 12 (27 de dezembro de 2024): 225–30. https://doi.org/10.54691/wrjjav50.
Texto completo da fonteSenekane, Makhamisa. "Differentially Private Image Classification Using Support Vector Machine and Differential Privacy". Machine Learning and Knowledge Extraction 1, n.º 1 (20 de fevereiro de 2019): 483–91. http://dx.doi.org/10.3390/make1010029.
Texto completo da fonteKulkarni, Shantanu, Pranjali Bawane, Rahul S.S, M. B. Bagwan e Shailly Gupta. "Surgical Confidentiality and Data Protection: A Legal Analysis". Journal of Neonatal Surgery 14, n.º 2S (10 de fevereiro de 2025): 87–96. https://doi.org/10.52783/jns.v14.1661.
Texto completo da fonteDeruelle, Thibaud, Veronika Kalouguina, Philipp Trein e Joël Wagner. "Designing privacy in personalized health: An empirical analysis". Big Data & Society 10, n.º 1 (janeiro de 2023): 205395172311586. http://dx.doi.org/10.1177/20539517231158636.
Texto completo da fonte