Literatura científica selecionada sobre o tema "Private Data Analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Private Data Analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Private Data Analysis"
Shi, Elaine, T. H. Hubert Chan, Eleanor Rieffel e Dawn Song. "Distributed Private Data Analysis". ACM Transactions on Algorithms 13, n.º 4 (21 de dezembro de 2017): 1–38. http://dx.doi.org/10.1145/3146549.
Texto completo da fonteAbdul Manap, Nazura, Mohamad Rizal Abd Rahman e Siti Nur Farah Atiqah Salleh. "HEALTH DATA OWNERSHIP IN MALAYSIA PUBLIC AND PRIVATE HEALTHCARE: A LEGAL ANALYSIS OF HEALTH DATA PRIVACY IN THE AGE OF BIG DATA". International Journal of Law, Government and Communication 7, n.º 30 (31 de dezembro de 2022): 33–41. http://dx.doi.org/10.35631/ijlgc.730004.
Texto completo da fonteDwork, Cynthia, Frank McSherry, Kobbi Nissim e Adam Smith. "Calibrating Noise to Sensitivity in Private Data Analysis". Journal of Privacy and Confidentiality 7, n.º 3 (30 de maio de 2017): 17–51. http://dx.doi.org/10.29012/jpc.v7i3.405.
Texto completo da fonteProserpio, Davide, Sharon Goldberg e Frank McSherry. "Calibrating data to sensitivity in private data analysis". Proceedings of the VLDB Endowment 7, n.º 8 (abril de 2014): 637–48. http://dx.doi.org/10.14778/2732296.2732300.
Texto completo da fonteMandal, Sanjeev Kumar, Amit Sharma, Santosh Kumar Henge, Sumaira Bashir, Madhuresh Shukla e Asim Tara Pathak. "Secure data encryption key scenario for protecting private data security and privacy". Journal of Discrete Mathematical Sciences and Cryptography 27, n.º 2 (2024): 269–81. http://dx.doi.org/10.47974/jdmsc-1881.
Texto completo da fonteAppenzeller, Arno, Moritz Leitner, Patrick Philipp, Erik Krempel e Jürgen Beyerer. "Privacy and Utility of Private Synthetic Data for Medical Data Analyses". Applied Sciences 12, n.º 23 (1 de dezembro de 2022): 12320. http://dx.doi.org/10.3390/app122312320.
Texto completo da fonteLobo-Vesga, Elisabet, Alejandro Russo e Marco Gaboardi. "A Programming Language for Data Privacy with Accuracy Estimations". ACM Transactions on Programming Languages and Systems 43, n.º 2 (julho de 2021): 1–42. http://dx.doi.org/10.1145/3452096.
Texto completo da fonteDwork, Cynthia. "A firm foundation for private data analysis". Communications of the ACM 54, n.º 1 (janeiro de 2011): 86–95. http://dx.doi.org/10.1145/1866739.1866758.
Texto completo da fonteBos, Joppe W., Kristin Lauter e Michael Naehrig. "Private predictive analysis on encrypted medical data". Journal of Biomedical Informatics 50 (agosto de 2014): 234–43. http://dx.doi.org/10.1016/j.jbi.2014.04.003.
Texto completo da fonteAher, Ujjwala Bal, Amol A. Bhosle, Prachi Palsodkar, Swati Bula Patil, Nishchay Koul e Purva Mange. "Secure data sharing in collaborative network environments for privacy-preserving mechanisms". Journal of Discrete Mathematical Sciences and Cryptography 27, n.º 2-B (2024): 855–65. http://dx.doi.org/10.47974/jdmsc-1961.
Texto completo da fonteTeses / dissertações sobre o assunto "Private Data Analysis"
Puglisi, Silvia. "Analysis, modelling and protection of online private data". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456205.
Texto completo da fonteLas comunicaciones en línea generan una cantidad constante de datos que fluyen entre usuarios, servicios y aplicaciones. Esta información es el resultado de las interacciones entre diferentes partes y, una vez recolectada, se utiliza para una gran variedad de propósitos, desde perfiles de marketing hasta recomendaciones de productos, pasando por filtros de noticias y sugerencias de relaciones. La motivación detrás de este trabajo es entender cómo los datos son compartidos y utilizados por los servicios en nombre de los usuarios. Cuando un usuario crea una nueva cuenta en una determinada plataforma, ello crea un contenedor lógico que se utilizará para almacenar la actividad del propio usuario. El servicio tiene como objetivo perfilar al usuario. Por lo tanto, cada vez que se crean, se comparten o se accede a los datos, se recopila y analiza información sobre el comportamiento y los intereses del usuario. Los usuarios producen estos datos, pero desconocen cómo serán manejados por el servicio, o con quién se compartirán. O lo que es más importante, una vez agregados, estos datos podrían revelar, con el tiempo, más información de la que los mismos usuarios habían previsto inicialmente. La información revelada por un perfil podría utilizarse para obtener acceso a otra cuenta o durante ataques de ingeniería social. El objetivo principal de esta tesis es modelar y analizar cómo fluyen los datos de los usuarios entre diferentes aplicaciones y cómo esto representa una amenaza importante para la privacidad. Con el propósito de definir las violaciones de privacidad, se utilizan patrones que permiten clasificar las amenazas e identificar los problemas en los que los datos de los usuarios son mal gestionados. Los datos de los usuarios se modelan como eventos categorizados y se agregan como histogramas de frecuencias relativas de actividad en línea en categorías predefinidas de intereses. Además, se introduce un paradigma basado en hipermedia para modelar las huellas en línea. Esto enfatiza la interacción entre los diferentes eventos generados por el usuario y sus efectos sobre el riesgo medido de privacidad del usuario. Finalmente, se discuten las lecciones aprendidas de la aplicación del paradigma a diferentes escenarios.
Les comunicacions en línia generen una quantitat constant de dades que flueixen entre usuaris, serveis i aplicacions. Aquesta informació és el resultat de les interaccions entre diferents parts i, un cop recol·lectada, s’utilitza per a una gran varietat de propòsits, des de perfils de màrqueting fins a recomanacions de productes, passant per filtres de notícies i suggeriments de relacions. La motivació darrere d’aquest treball és entendre com les dades són compartides i utilitzades pels serveis en nom dels usuaris. Quan un usuari crea un nou compte en una determinada plataforma, això crea un contenidor lògic que s’utilitzarà per emmagatzemar l’activitat del propi usuari. El servei té com a objectiu perfilar a l’usuari. Per tant, cada vegada que es creen, es comparteixen o s’accedeix a les dades, es recopila i analitza informació sobre el comportament i els interessos de l’usuari. Els usuaris produeixen aquestes dades però desconeixen com seran gestionades pel servei, o amb qui es compartiran. O el que és més important, un cop agregades, aquestes dades podrien revelar, amb el temps, més informació de la que els mateixos usuaris havien previst inicialment. La informació revelada per un perfil podria utilitzar-se per accedir a un altre compte o durant atacs d’enginyeria social. L’objectiu principal d’aquesta tesi és modelar i analitzar com flueixen les dades dels usuaris entre diferents aplicacions i com això representa una amenaça important per a la privacitat. Amb el propòsit de definir les violacions de privacitat, s’utilitzen patrons que permeten classificar les amenaces i identificar els problemes en què les dades dels usuaris són mal gestionades. Les dades dels usuaris es modelen com esdeveniments categoritzats i s’agreguen com histogrames de freqüències relatives d’activitat en línia en categories predefinides d’interessos. A més, s’introdueix un paradigma basat en hipermèdia per modelar les petjades en línia. Això emfatitza la interacció entre els diferents esdeveniments generats per l’usuari i els seus efectes sobre el risc mesurat de privacitat de l’usuari. Finalment, es discuteixen les lliçons apreses de l’aplicació del paradigma a diferents escenaris.
Alborch, escobar Ferran. "Private Data Analysis over Encrypted Databases : Mixing Functional Encryption with Computational Differential Privacy". Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAT003.
Texto completo da fonteIn our current digitalized society, data is ruling the world. But as it is most of the time related to individuals, its exploitation should respect the privacy of the latter. This issue has raised the differential privacy paradigm, which permits to protect individuals when querying databases containing data about them. But with the emergence of cloud computing, it is becoming increasingly necessary to also consider the confidentiality of "on-cloud'' storage confidentiality of such vast databases, using encryption techniques. This thesis studies how to provide both privacy and confidentiality of such outsourced databases by mixing two primitives: computational differential privacy and functional encryption. First, we study the relationship between computational differential privacy and functional encryption for randomized functions in a generic way. We analyze the privacy of the setting where a malicious analyst may access the encrypted data stored in a server, either by corrupting or breaching it, and prove that a secure randomized functional encryption scheme supporting the appropriate family of functions guarantees the computational differential privacy of the system. Second, we construct efficient randomized functional encryption schemes for certain useful families of functions, and we prove them secure in the standard model under well-known assumptions. The families of functions considered are linear functions, used for example in counting queries, histograms and linear regressions, and quadratic functions, used for example in quadratic regressions and hypothesis testing. The schemes built are then used together with the first result to construct encrypted databases for their corresponding family of queries. Finally, we implement both randomized functional encryption schemes to analyze their efficiency. This shows that our constructions are practical for databases with up to 1 000 000 entries in the case of linear queries and databases with up to 10 000 database entries in the case of quadratic queries
Amirbekyan, Artak. "Protocols and Data Structures for Knowledge Discovery on Distributed Private Databases". Thesis, Griffith University, 2007. http://hdl.handle.net/10072/367447.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Nguyen, Mai Phuong. "Contribution of private healthcare to universal health coverage: an investigation of private over public health service utilisation in Vietnam". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/225903/1/Mai%20Phuong_Nguyen_Thesis.pdf.
Texto completo da fonteKarim, Martia. "Determinants of Venture Capital Investments : A panel data analysis across regions in the United Kingdom". Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Nationalekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40179.
Texto completo da fonteHabibovic, Sanel. "VIRTUAL PRIVATE NETWORKS : An Analysis of the Performance in State-of-the-Art Virtual Private Network solutions in Unreliable Network Conditions". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17844.
Texto completo da fonteCiccarelli, Armand. "An analysis of the impact of wireless technology on public vs. private traffic data collection, dissemination and use". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8817.
Texto completo da fonteIncludes bibliographical references (leaves 151-154).
The collection of data concerning traffic conditions (e.g., incidents, travel times, average speed, traffic volumes, etc.) on roadways has traditionally been carried out by those public entities charged with managing traffic flow, responding to incidents, and maintaining the surface of the roadway. Pursuant to this task, public agencies have employed inductive loop detectors, closed circuit television cameras, technology for tracking electronic toll tags, and other surveillance devices, in an effort to monitor conditions on roads within their jurisdictions. The high cost of deploying and maintaining this surveillance equipment has precluded most agencies from collecting data on roads other than freeways and important arterials. In addition, the "point" nature of most commonly utilized surveillance equipment limits both the variety of data available for analysis, as well as its overall accuracy. Consequently, these problems have limited the usefulness of this traffic data, both to the public agencies collecting it, as well as private entities who would like to use it as a resource from which they can generate fee-based traveler information services. Recent Federal Communications Commission (FCC) mandates concerning E-911 have led to the development of new technologies for tracking wireless devices (i.e., cellular phones). Although developed to assist mobile phone companies in meeting the FCC's E-911 mandate, a great deal of interest has arisen concerning their application to the collection of traffic data. That said, the goal of this thesis has been to compare traditional traffic surveillance technologies' capabilities and effectiveness with that of the wireless tracking systems currently under development. Our technical research indicates that these newly developed tracking technologies will eventually be able to provide wider geographic surveillance of roads at less expense than traditional surveillance equipment, as well as collect traffic information that is currently unavailable. Even so, our overall conclusions suggest that due to budgetary, institutional, and/or political constraints, some organizations may find themselves unable to procure this high quality data. Moreover, we believe that even those organizations (both public and private) that find themselves in a position to procure data collected via wireless tracking technology should first consider the needs of their "customers," the strength of the local market for traffic data, and their organization's overall mission, prior to making a final decision.
by Armand J. Ciccarelli, III.
M.C.P.and S.M.
Aronsson, Arvid, e Daniel Falkenström. "The Effects of Capital Income Taxation on Consumption : Panel data analysis of the OECD countries". Thesis, Jönköping University, IHH, Nationalekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-52920.
Texto completo da fonteShimada, Hideki. "Econometric Analysis of Social Interactions and Economic Incentives in Conservation Schemes". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263702.
Texto completo da fonteLanjouw, Jean Olson. "The private value of patent rights : a dynamic programming and game theoretic analysis of West German patent renewal data, 1953-1988". Thesis, London School of Economics and Political Science (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527825.
Texto completo da fonteLivros sobre o assunto "Private Data Analysis"
Plotkin, Stephen. Private well water quality data bank feasibility analysis for Massachusetts. Amherst, MA: University of Massachusetts Private Well Water Quality Data Bank Feasiblity Study, 1989.
Encontre o texto completo da fonteBurnell, Derek. Investment expectations: A unit record analysis of data from the private new capital expenditure survey. Canberra: Australian Bureau of Statistics, 1993.
Encontre o texto completo da fonteAyele, Gashaw T. Do tax structures optimize private fixed investment in sub-Saharan Africa?: A data envelopment analysis. Addis Ababa, Ethiopia: The Horn Economic and Social Policy Institute, 2015.
Encontre o texto completo da fonteMario Viola de Azevedo Cunha. Market Integration Through Data Protection: An Analysis of the Insurance and Financial Industries in the EU. Dordrecht: Springer Netherlands, 2013.
Encontre o texto completo da fonteDa cheng qi ye yan jiu yuan. Min ying jing ji gai bian Zhongguo: Gai ge kai fang 40 nian min ying jing ji zhu yao shu ju jian ming fen xi = Private economy changes China : concise analysis of private economy data 40-years reform and opening up. Beijing Shi: She hui ke xue wen xian chu ban she, 2018.
Encontre o texto completo da fonteMal'shina, N., e Andrey Garnov. MODERN PRINCIPLES ANALYSIS OF RESOURCE FLOWS IN CRISIS CONDITIONS: CULTURE AND CREATIVE INDUSTRY. xxu: Academus Publishing, 2020. http://dx.doi.org/10.31519/978-1-4946-0018-1.
Texto completo da fonteLut, Yuliia. Privacy-Aware Data Analysis: Recent Developments for Statistics and Machine Learning. [New York, N.Y.?]: [publisher not identified], 2022.
Encontre o texto completo da fonteBruijn, Hans. The Governance of Privacy. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463729673.
Texto completo da fonteSloot, Bart, e Aviva Groot, eds. The Handbook of Privacy Studies. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462988095.
Texto completo da fonteMunir, Abu Bakar. Privacy and data protection: A comparative analysis with special reference to the Malaysian proposed law. Petaling Jaya, Selangor, Malaysia: Sweet & Maxwell Asia, 2002.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Private Data Analysis"
Zhu, Tianqing, Gang Li, Wanlei Zhou e Philip S. Yu. "Differentially Private Data Analysis". In Advances in Information Security, 49–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62004-6_6.
Texto completo da fonteWeiß, Stefanie. "Data analysis and results". In Determinants of Private Label Attitude, 67–79. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08672-5_4.
Texto completo da fonteRaskhodnikova, Sofya, e Adam Smith. "Private Analysis of Graph Data". In Encyclopedia of Algorithms, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_549-1.
Texto completo da fonteNissim, Kobbi. "Private Data Analysis via Output Perturbation". In Privacy-Preserving Data Mining, 383–414. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-70992-5_16.
Texto completo da fontePelletier, Mathilde, Nicolas Saunier e Jerome Le Ny. "Differentially Private Analysis of Transportation Data". In Privacy in Dynamical Systems, 131–55. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0493-8_7.
Texto completo da fonteWang, Ke, Benjamin C. M. Fung e Guozhu Dong. "Integrating Private Databases for Data Analysis". In Intelligence and Security Informatics, 171–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427995_14.
Texto completo da fonteHaire, M. J., e E. H. Gift. "A Guide for Reliability and Maintainability Data Acquisition". In Risk Analysis in the Private Sector, 377–84. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2465-2_29.
Texto completo da fonteThakurta, Abhradeep. "Beyond Worst Case Sensitivity in Private Data Analysis". In Encyclopedia of Algorithms, 192–99. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_547.
Texto completo da fonteThakurta, Abhradeep. "Beyond Worst Case Sensitivity in Private Data Analysis". In Encyclopedia of Algorithms, 1–8. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_547-1.
Texto completo da fonteDwork, Cynthia, Frank McSherry, Kobbi Nissim e Adam Smith. "Calibrating Noise to Sensitivity in Private Data Analysis". In Theory of Cryptography, 265–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11681878_14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Private Data Analysis"
Wang, Longfeng, Yutong Liu, Mingyan Wang, Qinghua Chen, Fengting Wang e Jiawei Chen. "Human Travel Behavior Analysis Using Private Car Data". In 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), 410–14. IEEE, 2024. http://dx.doi.org/10.1109/aiea62095.2024.10692794.
Texto completo da fonteZhou, Haiyan. "ASP Cluster analysis of humanistic quality evaluation data for private college students using NET technology and K-Means algorithm". In 2024 International Conference on Informatics Education and Computer Technology Applications (IECA), 15–20. IEEE, 2024. http://dx.doi.org/10.1109/ieca62822.2024.00010.
Texto completo da fonteZainab, Syeda Sana e., e Tahar Kechadi. "Sensitive and Private Data Analysis". In ICFNDS '19: 3rd International Conference on Future Networks and Distributed Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3341325.3342002.
Texto completo da fonteTakabi, Hassan, Samir Koppikar e Saman Taghavi Zargar. "Differentially Private Distributed Data Analysis". In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC). IEEE, 2016. http://dx.doi.org/10.1109/cic.2016.038.
Texto completo da fonteHossain, Md Tamjid, Shahriar Badsha e Haoting Shen. "Privacy, Security, and Utility Analysis of Differentially Private CPES Data". In 2021 IEEE Conference on Communications and Network Security (CNS). IEEE, 2021. http://dx.doi.org/10.1109/cns53000.2021.9705022.
Texto completo da fonteWang, Ning. "Data-dependent differentially private publication of horizontally partitioned data". In International Conference on Computational Modeling, Simulation, and Data Analysis (CMSDA 2021), editado por Fengjie Cen, Christos J. Bouras e Razali Yaakob. SPIE, 2022. http://dx.doi.org/10.1117/12.2627689.
Texto completo da fonteZhu, Keyu, Ferdinando Fioretto e Pascal Van Hentenryck. "Post-processing of Differentially Private Data: A Fairness Perspective". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/559.
Texto completo da fonteLi, Zhenju, Xuejun Li, Tao Liu, Sheng Yang e Jianwei Xie. "A preliminary data transfer model for private remote sensing cloud". In 2016 IEEE International Conference on Big Data Analysis (ICBDA). IEEE, 2016. http://dx.doi.org/10.1109/icbda.2016.7509816.
Texto completo da fontePustozerova, Anastasia, Jan Baumbach e Rudolf Mayer. "Differentially Private Federated Learning: Privacy and Utility Analysis of Output Perturbation and DP-SGD". In 2023 IEEE International Conference on Big Data (BigData). IEEE, 2023. http://dx.doi.org/10.1109/bigdata59044.2023.10386466.
Texto completo da fonteNissim, Kobbi, Sofya Raskhodnikova e Adam Smith. "Smooth sensitivity and sampling in private data analysis". In the thirty-ninth annual ACM symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250790.1250803.
Texto completo da fonteRelatórios de organizações sobre o assunto "Private Data Analysis"
Young, Andrew Young, Andrew J. Zahuranec Zahuranec, Michelle Winowatan Winowatan e Stefaan G. Verhulst Verhulst. LEVERAGING PRIVATE DATA FOR PUBLIC GOOD: A Descriptive Analysis and Typology of Existing Practices. GovLab, outubro de 2019. http://dx.doi.org/10.15868/socialsector.40380.
Texto completo da fonteMcGill, Karis, e Eleanor Turner. Return on Investment Analysis of Private Sector Facilitation Funds for Rwandan Agribusinesses. RTI Press, agosto de 2020. http://dx.doi.org/10.3768/rtipress.2020.rr.0042.2008.
Texto completo da fonteDay, Christopher M., Howell Li, Sarah M. L. Hubbard e Darcy M. Bullock. Observations of Trip Generation, Route Choice, and Trip Chaining with Private-Sector Probe Vehicle GPS Data. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317368.
Texto completo da fonteSmith, Paul N., David R. J. Gill, Michael J. McAuliffe, Catherine McDougall, James D. Stoney, Christopher J. Vertullo, Christopher J. Wall et al. Analysis of State and Territory Health Data: Supplementary Report. Australian Orthopaedic Association, outubro de 2023. http://dx.doi.org/10.25310/ixwe4642.
Texto completo da fonteCoombs, Elizabeth, Orazio J. Bellettini Cedeño e Paul E. Carrillo. Stay Public or Go Private?: A Comparative Analysis of Water Services between Quito and Guayaquil. Inter-American Development Bank, agosto de 2007. http://dx.doi.org/10.18235/0011284.
Texto completo da fonteLewis, Peter L., David RJ Gill, Michael J. McAuliffe, Catherine McDougall, James D. Stoney, Christopher J. Vertullo, Christopher J. Wall et al. Analysis of State and Territory Health Data: 2024 Supplementary Report. Australian Orthopaedic Association, outubro de 2024. http://dx.doi.org/10.25310/tgxs9590.
Texto completo da fonteJalles, João Tovar, Donghyun Park e Irfan Qureshi. ADB Economics Working Paper Series 737: Public versus Private Investment Multipliers in Emerging Market and Developing Economies: Cross-Country Analysis with a Focus on Asia. Asian Development Bank, agosto de 2024. http://dx.doi.org/10.22617/wps240372-2.
Texto completo da fonteAguiar, Angel, Caitlyn Carrico, Thomas Hertel, Zekarias Hussein, Robert McDougall e Badri Narayanan. Extending the GTAP framework for public procurement analysis. GTAP Working Paper, agosto de 2016. http://dx.doi.org/10.21642/gtap.wp82.
Texto completo da fonteTawfik, Aly, e Utsav Shah. Analysis of Freight Movements in the San Joaquin Valley. Mineta Transportation Institute, fevereiro de 2023. http://dx.doi.org/10.31979/mti.2023.2131.
Texto completo da fonteBonnett, Michaela, Angela Ladetto, Meaghan Kennedy, Jasmine Fernandez e Teri Garstka. Network Analysis of a Mobility Ecosystem in Detroit, MI. Orange Sparkle Ball, junho de 2024. http://dx.doi.org/10.61152/hejw8941https://www.orangesparkleball.com/innovation-library-blog/2024/5/30/sunbelt2024-network-analysis-of-a-mobility-ecosystem-in-detroit-mi.
Texto completo da fonte