Artigos de revistas sobre o tema "Principe du maximum Pontryagin"

Siga este link para ver outros tipos de publicações sobre o tema: Principe du maximum Pontryagin.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Principe du maximum Pontryagin".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bongini, Mattia, Massimo Fornasier, Francesco Rossi e Francesco Solombrino. "Mean-Field Pontryagin Maximum Principle". Journal of Optimization Theory and Applications 175, n.º 1 (10 de agosto de 2017): 1–38. http://dx.doi.org/10.1007/s10957-017-1149-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Artstein, Zvi. "Pontryagin Maximum Principle Revisited with Feedbacks". European Journal of Control 17, n.º 1 (janeiro de 2011): 46–54. http://dx.doi.org/10.3166/ejc.17.46-54.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Avakov, E. R., e G. G. Magaril-Il’yaev. "Pontryagin maximum principle, relaxation, and controllability". Doklady Mathematics 93, n.º 2 (março de 2016): 193–96. http://dx.doi.org/10.1134/s1064562416020216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cardin, Franco, e Andrea Spiro. "Pontryagin maximum principle and Stokes theorem". Journal of Geometry and Physics 142 (agosto de 2019): 274–86. http://dx.doi.org/10.1016/j.geomphys.2019.04.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Roth, Oliver. "Pontryagin’s Maximum Principle for the Loewner Equation in Higher Dimensions". Canadian Journal of Mathematics 67, n.º 4 (1 de agosto de 2015): 942–60. http://dx.doi.org/10.4153/cjm-2014-027-6.

Texto completo da fonte
Resumo:
AbstractIn this paper we develop a variational method for the Loewner equation in higher dimensions. As a result we obtain a version of Pontryagin’s maximum principle from optimal control theory for the Loewner equation in several complex variables. Based on recent work of Arosio, Bracci, and Wold, we then apply our version of the Pontryagin maximum principle to obtain first-order necessary conditions for the extremal mappings for a wide class of extremal problems over the set of normalized biholomorphic mappings on the unit ball in ℂn.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lovison, Alberto, e Franco Cardin. "A Pareto–Pontryagin Maximum Principle for Optimal Control". Symmetry 14, n.º 6 (6 de junho de 2022): 1169. http://dx.doi.org/10.3390/sym14061169.

Texto completo da fonte
Resumo:
In this paper, an attempt to unify two important lines of thought in applied optimization is proposed. We wish to integrate the well-known (dynamic) theory of Pontryagin optimal control with the Pareto optimization (of the static type), involving the maximization/minimization of a non-trivial number of functions or functionals, Pontryagin optimal control offers the definitive theoretical device for the dynamic realization of the objectives to be optimized. The Pareto theory is undoubtedly less known in mathematical literature, even if it was studied in topological and variational details (Morse theory) by Stephen Smale. This reunification, obviously partial, presents new conceptual problems; therefore, a basic review is necessary and desirable. After this review, we define and unify the two theories. Finally, we propose a Pontryagin extension of a recent multiobjective optimization application to the evolution of trees and the related anatomy of the xylems . This work is intended as the first contribution to a series to be developed by the authors on this subject.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Agrachev, A. A., e R. V. Gamkrelidze. "The Pontryagin Maximum Principle 50 years later". Proceedings of the Steklov Institute of Mathematics 253, S1 (julho de 2006): S4—S12. http://dx.doi.org/10.1134/s0081543806050026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Grabowski, Janusz, e MichałJóźwikowski. "Pontryagin Maximum Principle on Almost Lie Algebroids". SIAM Journal on Control and Optimization 49, n.º 3 (janeiro de 2011): 1306–57. http://dx.doi.org/10.1137/090760246.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ohsawa, Tomoki. "Contact geometry of the Pontryagin maximum principle". Automatica 55 (maio de 2015): 1–5. http://dx.doi.org/10.1016/j.automatica.2015.02.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Magaril-Il’yaev, G. G. "The Pontryagin maximum principle: Statement and proof". Doklady Mathematics 85, n.º 1 (fevereiro de 2012): 14–17. http://dx.doi.org/10.1134/s1064562412010048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Dmitruk, A. V., e A. M. Kaganovich. "The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle". Systems & Control Letters 57, n.º 11 (novembro de 2008): 964–70. http://dx.doi.org/10.1016/j.sysconle.2008.05.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ndaïrou, Faïçal, e Delfim F. M. Torres. "Pontryagin Maximum Principle for Distributed-Order Fractional Systems". Mathematics 9, n.º 16 (8 de agosto de 2021): 1883. http://dx.doi.org/10.3390/math9161883.

Texto completo da fonte
Resumo:
We consider distributed-order non-local fractional optimal control problems with controls taking values on a closed set and prove a strong necessary optimality condition of Pontryagin type. The possibility that admissible controls are subject to pointwise constraints is new and requires more sophisticated techniques to include a maximality condition. We start by proving results on continuity of solutions due to needle-like control perturbations. Then, we derive a differentiability result on the state solutions with respect to the perturbed trajectories. We end by stating and proving the Pontryagin maximum principle for distributed-order fractional optimal control problems, illustrating its applicability with an example.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Otmane, Cherif Abdelillah. "APPLICATION OF THE PONTRYAGIN MAXIMUM PRINCIPLE TO CONTROL TUMOR ANGIOGENESIS". Chronos 6, n.º 12(62) (13 de dezembro de 2021): 51–55. http://dx.doi.org/10.52013/2658-7556-62-12-16.

Texto completo da fonte
Resumo:
We present a sample application covering several cases using an extension of the Pontryagin Minimum Principle (PMP) [3]. We are interested in the management of tumor angiogenesis, that is, the therapeutic management of the proliferation of cancer cells that develop new blood vessels. Let us formulate the problem and derive the optimal control and apply the Pontryagin maximum principle to our optimal trajectory, and we derive the theorem and check it with an example. Then we will study stabilization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Otmane, Cherif Abdelillah. "APPLICATION OF THE PONTRYAGIN MAXIMUM PRINCIPLE TO CONTROL TUMOR ANGIOGENESIS". Chronos 7, n.º 10(72) (13 de novembro de 2022): 74–78. http://dx.doi.org/10.52013/2658-7556-72-10-22.

Texto completo da fonte
Resumo:
We present a sample application covering several cases using an extension of the Pontryagin Minimum Principle (PMP) [3]. We are interested in the management of tumor angiogenesis, that is, the therapeutic management of the proliferation of cancer cells that develop new blood vessels. Let us formulate the problem and derive the optimal control and apply the Pontryagin maximum principle to our optimal trajectory, and we derive the theorem and check it with an example. Then we will study stabilization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ndaïrou, Faïçal, e Delfim F. M. Torres. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems". Mathematics 11, n.º 19 (9 de outubro de 2023): 4218. http://dx.doi.org/10.3390/math11194218.

Texto completo da fonte
Resumo:
We introduce a new optimal control problem where the controlled dynamical system depends on multi-order (incommensurate) fractional differential equations. The cost functional to be maximized is of Bolza type and depends on incommensurate Caputo fractional-orders derivatives. We establish continuity and differentiability of the state solutions with respect to perturbed trajectories. Then, we state and prove a Pontryagin maximum principle for incommensurate Caputo fractional optimal control problems. Finally, we give an example, illustrating the applicability of our Pontryagin maximum principle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Krastanov, M. I., N. K. Ribarska e Ts Y. Tsachev. "A Pontryagin Maximum Principle for Infinite-Dimensional Problems". SIAM Journal on Control and Optimization 49, n.º 5 (janeiro de 2011): 2155–82. http://dx.doi.org/10.1137/100799009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Avakov, E. R., e G. G. Magaril-Il’yaev. "Mix of Controls and the Pontryagin Maximum Principle". Journal of Mathematical Sciences 217, n.º 6 (13 de agosto de 2016): 672–82. http://dx.doi.org/10.1007/s10958-016-2999-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ioffe, Alexander D. "An Elementary Proof of the Pontryagin Maximum Principle". Vietnam Journal of Mathematics 48, n.º 3 (5 de março de 2020): 527–36. http://dx.doi.org/10.1007/s10013-020-00397-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Gomoyunov, M. I. "On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems". Дифференциальные уравнения 59, n.º 11 (15 de dezembro de 2023): 1515–21. http://dx.doi.org/10.31857/s0374064123110067.

Texto completo da fonte
Resumo:
We consider the optimal control problem of minimizing the terminal cost functional for a dynamical system whose motion is described by a differential equation with Caputo fractional derivative. The relationship between the necessary optimality condition in the form of Pontryagin’s maximum principle and the Hamilton–Jacobi–Bellman equation with so-called fractional coinvariant derivatives is studied. It is proved that the costate variable in the Pontryagin maximum principle coincides, up to sign, with the fractional coinvariant gradient of the optimal result functional calculated along the optimal motion.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Nainggolan, J., F. J. Iswar e Abraham Abraham. "KONTROL OPTIMAL PADA PEYEBARAN TUBERKULOSIS DENGAN EXOGENOUS REINFECTION". JURNAL ILMIAH MATEMATIKA DAN TERAPAN 16, n.º 1 (20 de maio de 2019): 42–50. http://dx.doi.org/10.22487/2540766x.2019.v16.i1.12762.

Texto completo da fonte
Resumo:
Tuberculosis is a disease caused by Mycobacterium tuberculosis. Tuberculosis can be controlled through treatment, chemoprophylaxis and vaccination. Optimal control of treatment in the exposed compartment can be done in an effort to reduce the number of exposed compartments individual into the active compartment of tuberculosis. Optimal control can be completed by the Pontryagin Maximum Principle Method. Based on numerical simulation results, optimal control of treatment in the exposed compartment can reduce the number of infected compartments individual with active TB.Keywords : Exogenous Reinfection, Optimal Control, Pontryagin's Maximum Principle, Spread Of Tuberculosis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Rodrigues, Hugo Murilo, e Ryuichi Fukuoka. "Geodesic fields for Pontryagin type C0-Finsler manifolds". ESAIM: Control, Optimisation and Calculus of Variations 28 (2022): 19. http://dx.doi.org/10.1051/cocv/2022013.

Texto completo da fonte
Resumo:
Let M be a differentiable manifold, TxM be its tangent space at x ∈ M and TM = {(x, y);x ∈ M;y ∈ TxM} be its tangent bundle. A C0-Finsler structure is a continuous function F : TM → [0, ∞) such that F(x, ⋅) : TxM → [0, ∞) is an asymmetric norm. In this work we introduce the Pontryagin type C0-Finsler structures, which are structures that satisfy the minimum requirements of Pontryagin’s maximum principle for the problem of minimizing paths. We define the extended geodesic field ℰ on the slit cotangent bundle T*M\0 of (M, F), which is a generalization of the geodesic spray of Finsler geometry. We study the case where ℰ is a locally Lipschitz vector field. We show some examples where the geodesics are more naturally represented by ℰ than by a similar structure on TM. Finally we show that the maximum of independent Finsler structures is a Pontryagin type C0-Finsler structure where ℰ is a locally Lipschitz vector field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Fakharzadeh, Alireza, Somayeh Sharif e Karim Eslamloueyan. "Extension Of Pontryagin Maximum Principle And Its Economical Applications". Journal of Mathematics and Computer Science 05, n.º 04 (30 de dezembro de 2012): 313–19. http://dx.doi.org/10.22436/jmcs.05.04.09.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Dehaghani, Nahid Binandeh, e Fernando Lobo Pereira. "High Fidelity Quantum State Transfer by Pontryagin Maximum Principle". IFAC-PapersOnLine 55, n.º 16 (2022): 214–19. http://dx.doi.org/10.1016/j.ifacol.2022.09.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Liu, Xuan. "A Stochastic Pontryagin Maximum Principle on the Sierpinski Gasket". SIAM Journal on Control and Optimization 56, n.º 6 (janeiro de 2018): 4288–308. http://dx.doi.org/10.1137/17m1113606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Aseev, S. M., e A. V. Kryazhimskii. "The Pontryagin maximum principle and optimal economic growth problems". Proceedings of the Steklov Institute of Mathematics 257, n.º 1 (julho de 2007): 1–255. http://dx.doi.org/10.1134/s0081543807020010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Magaril-Il’yaev, G. G. "The Pontryagin maximum principle. Ab ovo usque ad mala". Proceedings of the Steklov Institute of Mathematics 291, n.º 1 (novembro de 2015): 203–18. http://dx.doi.org/10.1134/s0081543815080167.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gamkrelidze, R. V. "History of the Discovery of the Pontryagin Maximum Principle". Proceedings of the Steklov Institute of Mathematics 304, n.º 1 (janeiro de 2019): 1–7. http://dx.doi.org/10.1134/s0081543819010012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Quoc Khanh, Phan. "On Pontryagin maximum principle for linear systems with constraints". Optimization 16, n.º 1 (janeiro de 1985): 63–69. http://dx.doi.org/10.1080/02331938508842990.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Little, G. "The Pontryagin maximum principle: the constancy of the Hamiltonian". IMA Journal of Mathematical Control and Information 13, n.º 4 (1 de dezembro de 1996): 403–8. http://dx.doi.org/10.1093/imamci/13.4.403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bergounioux, Maïtine, e Housnaa Zidani. "Pontryagin Maximum Principle for Optimal Control of Variational Inequalities". SIAM Journal on Control and Optimization 37, n.º 4 (janeiro de 1999): 1273–90. http://dx.doi.org/10.1137/s0363012997328087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ballestra, Luca Vincenzo. "The spatial AK model and the Pontryagin maximum principle". Journal of Mathematical Economics 67 (dezembro de 2016): 87–94. http://dx.doi.org/10.1016/j.jmateco.2016.09.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Waldherr, Steffen, e Henning Lindhorst. "Optimality in cellular storage via the Pontryagin Maximum Principle". IFAC-PapersOnLine 50, n.º 1 (julho de 2017): 9889–95. http://dx.doi.org/10.1016/j.ifacol.2017.08.1615.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lin, Ping, e Jiongmin Yong. "Controlled Singular Volterra Integral Equations and Pontryagin Maximum Principle". SIAM Journal on Control and Optimization 58, n.º 1 (janeiro de 2020): 136–64. http://dx.doi.org/10.1137/19m124602x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kamocki, Rafal. "Pontryagin maximum principle for fractional ordinary optimal control problems". Mathematical Methods in the Applied Sciences 37, n.º 11 (10 de julho de 2013): 1668–86. http://dx.doi.org/10.1002/mma.2928.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bourdin, Loïc, e Emmanuel Trélat. "Pontryagin maximum principle for optimal sampled-data control problems". IFAC-PapersOnLine 48, n.º 25 (2015): 80–84. http://dx.doi.org/10.1016/j.ifacol.2015.11.063.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zhou, Jiangjing, Anna Tur, Ovanes Petrosian e Hongwei Gao. "Transferable Utility Cooperative Differential Games with Continuous Updating Using Pontryagin Maximum Principle". Mathematics 9, n.º 2 (14 de janeiro de 2021): 163. http://dx.doi.org/10.3390/math9020163.

Texto completo da fonte
Resumo:
We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Mamedova, Turkan. "ANALOGUE OF THE DISCRETE MAXIMUM PRINCIPLE AND THE NECESSARY OPTIMALITY CONDITION OF SINGULAR CONTROLS IN ONE TWO-PARAMETRIC DISCRETE OPTIMAL CONTROL PROBLEM". Applied Mathematics and Control Sciences, n.º 3 (10 de novembro de 2021): 7–34. http://dx.doi.org/10.15593/2499-9873/2021.3.01.

Texto completo da fonte
Resumo:
A two-stage (stepwise) optimal control problem for linear two-parameter systems with distributed control functions is considered. The aim of the work is to establish the necessary optimality condition under the assumption that the convexity of the set of admissible controls is satisfied and the connection condition is nonlinear. Using increments of the quality functional in the form of two-dimensional linear inhomogeneous systems of difference equations, a formula is obtained that allows one to obtain both a discrete analogue of the Pontryagin maximum principle and to study the case of its degeneration. A theorem is formulated that is an analogue of the discrete Pontryagin maximum principle for the problem under consideration. In the case of special controls, the discrete maximum principle degenerates and, therefore, becomes ineffective, including in the verification sense. Therefore, it is necessary to have new necessary conditions for optimality. A special, in the sense of the Pontryagin maximum principle, case of a discrete maximum condition, under which admissible controls are considered special, is studied. A necessary condition for optimality of singular controls is established.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Rasulzade, Shahla. "REQUIRED OPTIMALITY CONDITIONS IN ONE OPTIMAL CONTROL PROBLEM WITH MULTIPOINT FUNCTIONAL". Applied Mathematics and Control Sciences, n.º 2 (30 de junho de 2020): 7–26. http://dx.doi.org/10.15593/2499-9873/2020.2.01.

Texto completo da fonte
Resumo:
One specific optimal control problem with distributed parameters of the Moskalenko type with a multipoint quality functional is considered. To date, the theory of necessary first-order optimality conditions such as the Pontryagin maximum principle or its consequences has been sufficiently developed for various optimal control problems described by ordinary differential equations, i.e. for optimal control problems with lumped parameters. Many controlled processes are described by various partial differential equations (processes with distributed parameters). Some features are inherent in optimal control problems with distributed parameters, and therefore, when studying the optimal control problem with distributed parameters, in particular, when deriving various necessary optimality conditions, non-trivial difficulties arise. In particular, in the study of cases of degeneracy of the established necessary optimality conditions, fundamental difficulties arise. In the present work, we study one optimal control problem described by a system of first-order partial differential equations with a controlled initial condition under the assumption that the initial function is a solution to the Cauchy problem for ordinary differential equations. The objective function (quality criterion) is multi-point. Therefore, it becomes necessary to introduce an unconventional conjugate equation, not in differential (classical), but in integral form. In the work, using one version of the increment method, using the explicit linearization method of the original system, the necessary optimality condition is proved in the form of an analog of the maximum principle of L.S. Pontryagin. It is known that the maximum principle of L.S. Pontryagin for various optimal control problems is the strongest necessary condition for optimality. But the principle of a maximum of L.S. Pontryagin, being a necessary condition of the first order, often degenerates. Such cases are called special, and the corresponding management, special management. Based on these considerations, in the considered problem, we study the case of degeneration of the maximum principle of L.S. Pontryagin for the problem under consideration. For this purpose, a formula for incrementing the quality functional of the second order is constructed. By introducing auxiliary matrix functions, it was possible to obtain a second-order increment formula that is constructive in nature. The necessary optimality condition for special controls in the sense of the maximum principle of L.S. Pontryagin is proved. The proved necessary optimality conditions are explicit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Zemliak, Alexander. "Analysis of strategies of circuit optimisation on basis of maximum principle". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, n.º 1 (2 de janeiro de 2018): 484–503. http://dx.doi.org/10.1108/compel-12-2016-0540.

Texto completo da fonte
Resumo:
Purpose This paper aims to propose a new approach on the problem of circuit optimisation by using the generalised optimisation methodology presented earlier. This approach is focused on the application of the maximum principle of Pontryagin for searching the best structure of a control vector providing the minimum central processing unit (CPU) time. Design/methodology/approach The process of circuit optimisation is defined mathematically as a controllable dynamical system with a control vector that changes the internal structure of the equations of the optimisation procedure. In this case, a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. A practical approach for the realisation of the maximum principle is based on the analysis of the behaviour of a Hamiltonian for various strategies of optimisation and provides the possibility to find the optimum points of switching for the control vector. Findings It is shown that in spite of the fact that the maximum principle is not a sufficient condition for obtaining the global minimum for the non-linear problem, the decision can be obtained in the form of local minima. These local minima provide rather a low value of the CPU time. Numerical results were obtained for both a two-dimensional case and an N-dimensional case. Originality/value The possibility of the use of the maximum principle of Pontryagin to a problem of circuit optimisation is analysed systematically for the first time. The important result is the theoretical justification of formerly discovered effect of acceleration of the process of circuit optimisation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Aliyeva, Saadat Tofig. "The Pontryagin maximum principle for nonlinear fractional order difference equations". Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika, n.º 54 (1 de março de 2021): 4–11. http://dx.doi.org/10.17223/19988605/54/1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Golvinskii, P. A. "Pontryagin principle of maximum for the quantum problem of speed". Automation and Remote Control 68, n.º 4 (abril de 2007): 610–18. http://dx.doi.org/10.1134/s0005117907040042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Gamkrelidze, R. V. "Dual formulation of the Pontryagin maximum principle in optimal control". Proceedings of the Steklov Institute of Mathematics 291, n.º 1 (novembro de 2015): 61–67. http://dx.doi.org/10.1134/s0081543815080064.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Paruchuri, Pradyumna, e Debasish Chatterjee. "Discrete Time Pontryagin Maximum Principle Under State-Action-Frequency Constraints". IEEE Transactions on Automatic Control 64, n.º 10 (outubro de 2019): 4202–8. http://dx.doi.org/10.1109/tac.2019.2893160.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Phogat, Karmvir Singh, Debasish Chatterjee e Ravi N. Banavar. "A discrete-time Pontryagin maximum principle on matrix Lie groups". Automatica 97 (novembro de 2018): 376–91. http://dx.doi.org/10.1016/j.automatica.2018.08.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Barron, E. N. "The Pontryagin maximum principle for minimax problems of optimal control". Nonlinear Analysis: Theory, Methods & Applications 15, n.º 12 (dezembro de 1990): 1155–65. http://dx.doi.org/10.1016/0362-546x(90)90051-h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Blot, Joël, e Hasan Yilmaz. "A Generalization of Michel’s Result on the Pontryagin Maximum Principle". Journal of Optimization Theory and Applications 183, n.º 3 (26 de setembro de 2019): 792–812. http://dx.doi.org/10.1007/s10957-019-01587-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kipka, Robert J., e Yuri S. Ledyaev. "Pontryagin Maximum Principle for Control Systems on Infinite Dimensional Manifolds". Set-Valued and Variational Analysis 23, n.º 1 (4 de outubro de 2014): 133–47. http://dx.doi.org/10.1007/s11228-014-0301-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Chang, Dong Eui. "A simple proof of the Pontryagin maximum principle on manifolds". Automatica 47, n.º 3 (março de 2011): 630–33. http://dx.doi.org/10.1016/j.automatica.2011.01.037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Sumin, Mikhail Iosifovich. "WHY REGULARIZATION OF LAGRANGE PRINCIPLE AND PONTRYAGIN MAXIMUM PRINCIPLE IS NEEDED AND WHAT IT GIVES". Tambov University Reports. Series: Natural and Technical Sciences, n.º 124 (2018): 757–75. http://dx.doi.org/10.20310/1810-0198-2018-23-124-757-775.

Texto completo da fonte
Resumo:
We consider the regularization of the classical Lagrange principle and the Pontryagin maximum principle in convex problems of mathematical programming and optimal control. On example of the “simplest” problems of constrained infinitedimensional optimization, two main questions are discussed: why is regularization of the classical optimality conditions necessary and what does it give?
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Rivera, Javier. "A Note on a Possible Connection between Pontryagin Maximum Principle and Jaynes Maximum Entropy". Annals of Pure and Applied Mathematics 17, n.º 2 (1 de maio de 2018): 233–40. http://dx.doi.org/10.22457/apam.v17n2a9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia