Artigos de revistas sobre o tema "Primal-Dual learning algorithm"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Primal-Dual learning algorithm".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Overman, Tom, Garrett Blum e Diego Klabjan. "A Primal-Dual Algorithm for Hybrid Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de março de 2024): 14482–89. http://dx.doi.org/10.1609/aaai.v38i13.29363.
Texto completo da fonteYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completo da fonteWang, Shuai, Yanqing Xu, Zhiguo Wang, Tsung-Hui Chang, Tony Q. S. Quek e Defeng Sun. "Beyond ADMM: A Unified Client-Variance-Reduced Adaptive Federated Learning Framework". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junho de 2023): 10175–83. http://dx.doi.org/10.1609/aaai.v37i8.26212.
Texto completo da fonteLai, Hanjiang, Yan Pan, Cong Liu, Liang Lin e Jie Wu. "Sparse Learning-to-Rank via an Efficient Primal-Dual Algorithm". IEEE Transactions on Computers 62, n.º 6 (junho de 2013): 1221–33. http://dx.doi.org/10.1109/tc.2012.62.
Texto completo da fonteTao, Wei, Wei Li, Zhisong Pan e Qing Tao. "Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 9843–50. http://dx.doi.org/10.1609/aaai.v35i11.17183.
Texto completo da fonteDing, Yuhao, e Javad Lavaei. "Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 7396–404. http://dx.doi.org/10.1609/aaai.v37i6.25900.
Texto completo da fonteBai, Qinbo, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel e Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 4 (28 de junho de 2022): 3682–89. http://dx.doi.org/10.1609/aaai.v36i4.20281.
Texto completo da fonteBai, Qinbo, Amrit Singh Bedi e Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 6737–44. http://dx.doi.org/10.1609/aaai.v37i6.25826.
Texto completo da fonteGupta, Ankita, Lakhwinder Kaur e Gurmeet Kaur. "Drought stress detection technique for wheat crop using machine learning". PeerJ Computer Science 9 (19 de maio de 2023): e1268. http://dx.doi.org/10.7717/peerj-cs.1268.
Texto completo da fonteLiu, Bo, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan e Marek Petrik. "Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity". Journal of Artificial Intelligence Research 63 (15 de novembro de 2018): 461–94. http://dx.doi.org/10.1613/jair.1.11251.
Texto completo da fonteHerguedas-Alonso, A. Estela, Víctor M. García-Suárez e Juan L. Fernández-Martínez. "Compressed Sensing Techniques Applied to Medical Images Obtained with Magnetic Resonance". Mathematics 11, n.º 16 (18 de agosto de 2023): 3573. http://dx.doi.org/10.3390/math11163573.
Texto completo da fonteZhao, Xiao, Xuhui Xia e Guodong Yu. "Primal-Dual Learning Based Risk-Averse Optimal Integrated Allocation of Hybrid Energy Generation Plants under Uncertainty". Energies 12, n.º 12 (13 de junho de 2019): 2275. http://dx.doi.org/10.3390/en12122275.
Texto completo da fonteYe, Yao, e Heng-you Lan. "Novel Accelerated Cyclic Iterative Approximation for Hierarchical Variational Inequalities Constrained by Multiple-Set Split Common Fixed-Point Problems". Mathematics 12, n.º 18 (21 de setembro de 2024): 2935. http://dx.doi.org/10.3390/math12182935.
Texto completo da fonteMahadevan, Sridhar, Stephen Giguere e Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (30 de junho de 2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Texto completo da fonteHuang, Shuangping, Lianwen Jin e Yunyu Li. "Online Multikernel Learning Based on a Triple-Norm Regularizer for Semantic Image Classification". Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/346496.
Texto completo da fonteChu, Dejun, Changshui Zhang, Shiliang Sun e Qing Tao. "Structured BFGS Method for Optimal Doubly Stochastic Matrix Approximation". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 7193–201. http://dx.doi.org/10.1609/aaai.v37i6.25877.
Texto completo da fonteNavarro, Jorge, Eduardo Fernández, Efrain Solares, Abril Flores e Raymundo Díaz. "Learning the Parameters of ELECTRE-Based Primal-Dual Sorting Methods that Use Either Characteristic or Limiting Profiles". Axioms 12, n.º 3 (11 de março de 2023): 294. http://dx.doi.org/10.3390/axioms12030294.
Texto completo da fonteDey, Sumanta, Pallab Dasgupta e Soumyajit Dey. "P2BPO: Permeable Penalty Barrier-Based Policy Optimization for Safe RL". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de março de 2024): 21029–36. http://dx.doi.org/10.1609/aaai.v38i19.30094.
Texto completo da fonteGuo, Hengquan, Hongchen Cao, Jingzhu He, Xin Liu e Yuanming Shi. "POBO: Safe and Optimal Resource Management for Cloud Microservices". ACM SIGMETRICS Performance Evaluation Review 51, n.º 4 (22 de fevereiro de 2024): 20–21. http://dx.doi.org/10.1145/3649477.3649489.
Texto completo da fonteLiao, Dongping, Xitong Gao e Chengzhong Xu. "Impartial Adversarial Distillation: Addressing Biased Data-Free Knowledge Distillation via Adaptive Constrained Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 4 (24 de março de 2024): 3342–50. http://dx.doi.org/10.1609/aaai.v38i4.28120.
Texto completo da fonteZhang, Dewei, Yin Liu e Sam Davanloo Tajbakhsh. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure". INFORMS Journal on Computing 34, n.º 2 (março de 2022): 1126–40. http://dx.doi.org/10.1287/ijoc.2021.1069.
Texto completo da fonteBebortta, Sujit, Subhranshu Sekhar Tripathy, Shakila Basheer e Chiranji Lal Chowdhary. "FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records". Diagnostics 13, n.º 20 (10 de outubro de 2023): 3166. http://dx.doi.org/10.3390/diagnostics13203166.
Texto completo da fonteOgumeyo, S. A., e E. A. Okogun. "Determination of periodic optimal recruitment and wastage schedule using dynamic programming approach". Dutse Journal of Pure and Applied Sciences 9, n.º 2a (14 de julho de 2023): 14–23. http://dx.doi.org/10.4314/dujopas.v9i2a.2.
Texto completo da fonteMa, Xin, Yubin Cai, Hong Yuan e Yanqiao Deng. "Partially Linear Component Support Vector Machine for Primary Energy Consumption Forecasting of the Electric Power Sector in the United States". Sustainability 15, n.º 9 (23 de abril de 2023): 7086. http://dx.doi.org/10.3390/su15097086.
Texto completo da fonteShalev-Shwartz, Shai, e Yoram Singer. "A primal-dual perspective of online learning algorithms". Machine Learning 69, n.º 2-3 (11 de julho de 2007): 115–42. http://dx.doi.org/10.1007/s10994-007-5014-x.
Texto completo da fonteNIELSEN, FRANK, e RICHARD NOCK. "APPROXIMATING SMALLEST ENCLOSING BALLS WITH APPLICATIONS TO MACHINE LEARNING". International Journal of Computational Geometry & Applications 19, n.º 05 (outubro de 2009): 389–414. http://dx.doi.org/10.1142/s0218195909003039.
Texto completo da fonteDai, Juntao, Jiaming Ji, Long Yang, Qian Zheng e Gang Pan. "Augmented Proximal Policy Optimization for Safe Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 7288–95. http://dx.doi.org/10.1609/aaai.v37i6.25888.
Texto completo da fonteXiao, Ming, e Mikael Skoglund. "Coding for Large-Scale Distributed Machine Learning". Entropy 24, n.º 9 (12 de setembro de 2022): 1284. http://dx.doi.org/10.3390/e24091284.
Texto completo da fonteDing, Weiwei, Youlin Shang, Zhengfen Jin e Yibao Fan. "Semi-Proximal ADMM for Primal and Dual Robust Low-Rank Matrix Restoration from Corrupted Observations". Symmetry 16, n.º 3 (5 de março de 2024): 303. http://dx.doi.org/10.3390/sym16030303.
Texto completo da fonteFernández-Fuentes, Xosé, David Mera, Andrés Gómez e Ignacio Vidal-Franco. "Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach". Electronics 7, n.º 12 (11 de dezembro de 2018): 422. http://dx.doi.org/10.3390/electronics7120422.
Texto completo da fonteChege, Simon. "Deep Learning Aided Resource Allocation in Hybrid NOMA-Enabled Overloaded Systems". International Journal of Electrical and Electronic Engineering & Telecommunications 14, n.º 1 (2025): 1–12. https://doi.org/10.18178/ijeetc.14.1.1-12.
Texto completo da fonteDavey, Ashley, e Harry Zheng. "Deep Learning for Constrained Utility Maximisation". Methodology and Computing in Applied Probability, 26 de novembro de 2021. http://dx.doi.org/10.1007/s11009-021-09912-3.
Texto completo da fonteXu, Hai-Ming, Hui Xue, Xiao-Hong Chen e Yun-Yun Wang. "Solving Indefinite Kernel Support Vector Machine with Difference of Convex Functions Programming". Proceedings of the AAAI Conference on Artificial Intelligence 31, n.º 1 (13 de fevereiro de 2017). http://dx.doi.org/10.1609/aaai.v31i1.10889.
Texto completo da fonteTang, Kejie, Weidong Liu e Xiaojun Mao. "Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning". Machine Learning, 8 de abril de 2024. http://dx.doi.org/10.1007/s10994-024-06537-8.
Texto completo da fonteFukami, Takumi, Tomoya Murata, Kenta Niwa e Iifan Tyou. "DP-Norm: Differential Privacy Primal-Dual Algorithm for Decentralized Federated Learning". IEEE Transactions on Information Forensics and Security, 2024, 1. http://dx.doi.org/10.1109/tifs.2024.3390993.
Texto completo da fonteChen, Ningyuan, e Guillermo Gallego. "A Primal–Dual Learning Algorithm for Personalized Dynamic Pricing with an Inventory Constraint". Mathematics of Operations Research, 10 de fevereiro de 2022. http://dx.doi.org/10.1287/moor.2021.1220.
Texto completo da fonteYang, Yichen, e Zhaohui Liu. "Heuristics for Finding Sparse Solutions of Linear Inequalities". Asia-Pacific Journal of Operational Research, 15 de dezembro de 2021. http://dx.doi.org/10.1142/s021759592240005x.
Texto completo da fonteHuang, Jinshu, Yiming Gao e Chunlin Wu. "On dynamical system modeling of Learned Primal-Dual with a linear operator $\mathcal{K}$: Stability and convergence properties". Inverse Problems, 10 de maio de 2024. http://dx.doi.org/10.1088/1361-6420/ad49ca.
Texto completo da fonteSantos Garcia, Carlos, Mathilde Larchevêque, Solal O'Sullivan, Martin Van Waerebeke, Robert R. Thomson, Audrey Repetti e Jean-Christophe Pesquet. "A primal-dual data-driven method for computational optical imaging with a photonic lantern". PNAS Nexus, 16 de abril de 2024. http://dx.doi.org/10.1093/pnasnexus/pgae164.
Texto completo da fonteChen, Ningyuan, e Guillermo Gallego. "A Primal-dual Learning Algorithm for Personalized Dynamic Pricing with an Inventory Constraint". SSRN Electronic Journal, 2018. http://dx.doi.org/10.2139/ssrn.3301153.
Texto completo da fonteDutta, Haimonti. "A Consensus Algorithm for Linear Support Vector Machines". Management Science, 30 de agosto de 2021. http://dx.doi.org/10.1287/mnsc.2021.4042.
Texto completo da fonteHu, Rui, Jianan Cui, Chenxu Li, Chengjin Yu, Yunmei Chen e Huafeng Liu. "Dynamic low-count PET image reconstruction using spatio-temporal primal dual network". Physics in Medicine & Biology, 13 de junho de 2023. http://dx.doi.org/10.1088/1361-6560/acde3e.
Texto completo da fonteHenry-Labordere, Pierre. "Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to CVA and IM". SSRN Electronic Journal, 2017. http://dx.doi.org/10.2139/ssrn.3071506.
Texto completo da fonteZhao, Yong-Ping, Yao-Bin Chen, Zhao Hao, Hao Wang, Zhe Yang e Jian-Feng Tan. "Imbalanced Kernel Extreme Learning Machines for Fault Detection of Aircraft Engine". Journal of Dynamic Systems, Measurement, and Control 142, n.º 10 (1 de junho de 2020). http://dx.doi.org/10.1115/1.4047117.
Texto completo da fonteBekci, Recep Yusuf, Mehmet Gümüş e Sentao Miao. "Inventory Control and Learning for One-Warehouse Multistore System with Censored Demand". Operations Research, 2 de agosto de 2023. http://dx.doi.org/10.1287/opre.2021.0694.
Texto completo da fonteChen, Xi, Jiameng Lyu, Yining Wang e Yuan Zhou. "EXPRESS: Network Revenue Management with Demand Learning and Fair Resource-Consumption Balancing". Production and Operations Management, 5 de fevereiro de 2024. http://dx.doi.org/10.1177/10591478231225176.
Texto completo da fonteZheng, Zemin, Jie Zhang e Yang Li. "L0-Regularized Learning for High-Dimensional Additive Hazards Regression". INFORMS Journal on Computing, 13 de junho de 2022. http://dx.doi.org/10.1287/ijoc.2022.1208.
Texto completo da fontePrigent, Sylvain, Hoai-Nam Nguyen, Ludovic Leconte, Cesar Augusto Valades-Cruz, Bassam Hajj, Jean Salamero e Charles Kervrann. "SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos". Scientific Reports 13, n.º 1 (27 de janeiro de 2023). http://dx.doi.org/10.1038/s41598-022-26178-y.
Texto completo da fonteZhao, Chen, Feng Mi, Xintao Wu, Kai Jiang, Latifur Khan e Feng Chen. "Dynamic Environment Responsive Online Meta-Learning with Fairness Awareness". ACM Transactions on Knowledge Discovery from Data, 20 de fevereiro de 2024. http://dx.doi.org/10.1145/3648684.
Texto completo da fonteTerris, Matthieu, Chao Tang, Adrian Jackson e Yves Wiaux. "The AIRI plug-and-play algorithm for image reconstruction in radio-interferometry: variations and robustness". Monthly Notices of the Royal Astronomical Society, 24 de janeiro de 2025. https://doi.org/10.1093/mnras/staf022.
Texto completo da fonte