Literatura científica selecionada sobre o tema "Primal-Dual learning algorithm"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Primal-Dual learning algorithm".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Primal-Dual learning algorithm"
Overman, Tom, Garrett Blum e Diego Klabjan. "A Primal-Dual Algorithm for Hybrid Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de março de 2024): 14482–89. http://dx.doi.org/10.1609/aaai.v38i13.29363.
Texto completo da fonteYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Texto completo da fonteWang, Shuai, Yanqing Xu, Zhiguo Wang, Tsung-Hui Chang, Tony Q. S. Quek e Defeng Sun. "Beyond ADMM: A Unified Client-Variance-Reduced Adaptive Federated Learning Framework". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junho de 2023): 10175–83. http://dx.doi.org/10.1609/aaai.v37i8.26212.
Texto completo da fonteLai, Hanjiang, Yan Pan, Cong Liu, Liang Lin e Jie Wu. "Sparse Learning-to-Rank via an Efficient Primal-Dual Algorithm". IEEE Transactions on Computers 62, n.º 6 (junho de 2013): 1221–33. http://dx.doi.org/10.1109/tc.2012.62.
Texto completo da fonteTao, Wei, Wei Li, Zhisong Pan e Qing Tao. "Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 9843–50. http://dx.doi.org/10.1609/aaai.v35i11.17183.
Texto completo da fonteDing, Yuhao, e Javad Lavaei. "Provably Efficient Primal-Dual Reinforcement Learning for CMDPs with Non-stationary Objectives and Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 7396–404. http://dx.doi.org/10.1609/aaai.v37i6.25900.
Texto completo da fonteBai, Qinbo, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel e Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 4 (28 de junho de 2022): 3682–89. http://dx.doi.org/10.1609/aaai.v36i4.20281.
Texto completo da fonteBai, Qinbo, Amrit Singh Bedi e Vaneet Aggarwal. "Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 6737–44. http://dx.doi.org/10.1609/aaai.v37i6.25826.
Texto completo da fonteGupta, Ankita, Lakhwinder Kaur e Gurmeet Kaur. "Drought stress detection technique for wheat crop using machine learning". PeerJ Computer Science 9 (19 de maio de 2023): e1268. http://dx.doi.org/10.7717/peerj-cs.1268.
Texto completo da fonteLiu, Bo, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan e Marek Petrik. "Proximal Gradient Temporal Difference Learning: Stable Reinforcement Learning with Polynomial Sample Complexity". Journal of Artificial Intelligence Research 63 (15 de novembro de 2018): 461–94. http://dx.doi.org/10.1613/jair.1.11251.
Texto completo da fonteTeses / dissertações sobre o assunto "Primal-Dual learning algorithm"
Bouvier, Louis. "Apprentissage structuré et optimisation combinatoire : contributions méthodologiques et routage d'inventaire chez Renault". Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2024. http://www.theses.fr/2024ENPC0046.
Texto completo da fonteThis thesis stems from operations research challenges faced by Renault supply chain. Toaddress them, we make methodological contributions to the architecture and training of neural networks with combinatorial optimization (CO) layers. We combine them with new matheuristics to solve Renault’s industrial inventory routing problems.In Part I, we detail applications of neural networks with CO layers in operations research. We notably introduce a methodology to approximate constraints. We also solve some off- policy learning issues that arise when using such layers to encode policies for Markov decision processes with large state and action spaces. While most studies on CO layers rely on supervised learning, we introduce a primal-dual alternating minimization scheme for empirical risk minimization. Our algorithm is deep learning-compatible, scalable to large combinatorial spaces, and generic. In Part II, we consider Renault European packaging return logistics. Our rolling-horizon policy for the operational-level decisions is based on a new large neighborhood search for the deterministic variant of the problem. We demonstrate its efficiency on large-scale industrialinstances, that we release publicly, together with our code and solutions. We combine historical data and experts’ predictions to improve performance. A version of our policy has been used daily in production since March 2023. We also consider the tactical-level route contracting process. The sheer scale of this industrial problem prevents the use of classic stochastic optimization approaches. We introduce a new algorithm based on methodological contributions of Part I for empirical risk minimization
Hendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization". Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Primal-Dual learning algorithm"
Qin, Jingsheng, Lingjian Ye, Xinmin Zhang, Feifan Shen, Wei Wang e Longying Mao. "A Twin Primal-Dual DDPG Algorithm for Safety-Constrained Reinforcement Learning". In 2024 China Automation Congress (CAC), 2400–2405. IEEE, 2024. https://doi.org/10.1109/cac63892.2024.10864510.
Texto completo da fonteLee, Donghwan, e Niao He. "Stochastic Primal-Dual Q-Learning Algorithm For Discounted MDPs". In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8815275.
Texto completo da fonteLee, Donghwan, Hyungjin Yoon e Naira Hovakimyan. "Primal-Dual Algorithm for Distributed Reinforcement Learning: Distributed GTD". In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619839.
Texto completo da fonteBianchi, Pascal, Walid Hachem e Iutzeler Franck. "A stochastic coordinate descent primal-dual algorithm and applications". In 2014 IEEE 24th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2014. http://dx.doi.org/10.1109/mlsp.2014.6958866.
Texto completo da fonteWang, Shijun, Baocheng Zhu, Lintao Ma e Yuan Qi. "A Riemannian Primal-dual Algorithm Based on Proximal Operator and its Application in Metric Learning". In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852367.
Texto completo da fonteQu, Yang, Jinming Ma e Feng Wu. "Safety Constrained Multi-Agent Reinforcement Learning for Active Voltage Control". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/21.
Texto completo da fonteSankaran, Raman, Francis Bach e Chiranjib Bhattacharyya. "Learning With Subquadratic Regularization : A Primal-Dual Approach". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/272.
Texto completo da fonteWan, Yuanyu, Nan Wei e Lijun Zhang. "Efficient Adaptive Online Learning via Frequent Directions". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/381.
Texto completo da fonte