Artigos de revistas sobre o tema "Pressure-Wave-Propagation method"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Pressure-Wave-Propagation method".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
HoIe, S. "Recent developments in the pressure wave propagation method". IEEE Electrical Insulation Magazine 25, n.º 3 (maio de 2009): 7–20. http://dx.doi.org/10.1109/mei.2009.4976898.
Texto completo da fonteMiyazaki, Yusuke, Jon Farmer, Miki Morimatsu, Shota Ito, Séan Mitchell e Paul Sherratt. "Brain Pressure Wave Propagation during Baseball Impact". Proceedings 49, n.º 1 (15 de junho de 2020): 149. http://dx.doi.org/10.3390/proceedings2020049149.
Texto completo da fonteTommasin, Caenen, Verhegghe, Greenwald e Segers. "Physics of Within-Tissue Wave Propagation Generated by Pulse Propagation in the Carotid Artery". Applied Sciences 9, n.º 14 (18 de julho de 2019): 2878. http://dx.doi.org/10.3390/app9142878.
Texto completo da fonteZhang, Xiu Hua, e Yan Yan Wu. "Numerical Analysis of Shock Wave Propagation Law of Internal Gas Explosion". Applied Mechanics and Materials 105-107 (setembro de 2011): 299–302. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.299.
Texto completo da fonteWilliam-Louis, M. J. P., e C. Tournier. "Calculation of Pressure Wave Propagation Through a Tube Junction". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, n.º 3 (maio de 1996): 239–44. http://dx.doi.org/10.1243/pime_proc_1996_210_193_02.
Texto completo da fonteWei, Kang, Yuangui Mei, Qi Sun e Xiao Hu. "Propagation Characteristics of Initial Compression Wave Induced by 400 km/h High-Speed Trains Passing through Very Long Tunnels". Applied Sciences 14, n.º 13 (8 de julho de 2024): 5946. http://dx.doi.org/10.3390/app14135946.
Texto completo da fonteSun, Yali, Feihu Zheng, Zhenlian An, Yewen Zhang, Stephane Hole, Zhien Zhu, Liming Yang et al. "Pressure wave propagation method for space charge measurement in coaxial geometry". IEEE Transactions on Dielectrics and Electrical Insulation 25, n.º 6 (dezembro de 2018): 2139–46. http://dx.doi.org/10.1109/tdei.2018.007234.
Texto completo da fonteYang, Jun, Junhua He, Dezhi Zhang, Haibin Xu, Guokai Shi, Min Zhang, Wenxiang Liu e Yang Zhang. "Local Phase-Amplitude Joint Correction for Free Surface Velocity of Hopkinson Pressure Bar". Applied Sciences 10, n.º 15 (4 de agosto de 2020): 5390. http://dx.doi.org/10.3390/app10155390.
Texto completo da fonteAkkas, N., e F. Erdogan. "The Residual Variable Method Applied to Acoustic Wave Propagation from a Spherical Surface". Journal of Vibration and Acoustics 115, n.º 1 (1 de janeiro de 1993): 75–80. http://dx.doi.org/10.1115/1.2930318.
Texto completo da fonteShatalova, N., T. Apasov, Al Shatalov e B. Grigoriev. "Renovation method of restoring well productivity using wavefields". Journal of Mining Institute 258 (30 de dezembro de 2022): 986–97. http://dx.doi.org/10.31897/pmi.2022.108.
Texto completo da fonteCHANDRA, R., e S. SINGH. "Propagation of Laser Generated Shock Waves through Heterogeneous Metallic Mediums". Journal of Ultra Scientist of Physical Sciences Section B 36, n.º 3 (24 de junho de 2024): 19–27. http://dx.doi.org/10.22147/jusps-b/360301.
Texto completo da fonteZhang, Gang. "Experimental Study on Shock Wave Propagation of the Explosion in a Pipe with Holes by High-Speed Schlieren Method". Shock and Vibration 2020 (12 de setembro de 2020): 1–9. http://dx.doi.org/10.1155/2020/8850443.
Texto completo da fonteTanaka, A., M. Maeda e T. Takada. "Observation of charge behavior in organic photoconductor using pressure-wave propagation method". IEEE Transactions on Electrical Insulation 27, n.º 3 (junho de 1992): 440–44. http://dx.doi.org/10.1109/14.142704.
Texto completo da fonteLeontyeva, I. V., I. A. Kovalev, M. A. Shkolnikova, Yu S. Isayeva, A. N. Putintsev, E. N. Dudinskaya, O. N. Tkacheva e L. V. Machekhina. "Early diagnosis of increased stiffness of great vessels in adolescents with functional pathology of vegetative genesis". Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 66, n.º 3 (1 de julho de 2021): 52–61. http://dx.doi.org/10.21508/1027-4065-2021-66-3-52-61.
Texto completo da fonteLi, Zhan Hui, Yun Xin Wu e Zhi Li Long. "Effect of Contact Interface Pressure on Higher-Order Harmonic Wave and Bond Strength". Advanced Materials Research 148-149 (outubro de 2010): 36–39. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.36.
Texto completo da fonteButt, Hafiz Sana Ullah, e Pu Xue. "Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar". Key Engineering Materials 535-536 (janeiro de 2013): 547–50. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.547.
Texto completo da fonteZhang, Yongjian, Peng Peng, Tao Lin, Aiwei Lou, Dahai Li e Changan Di. "Research on the Shock Wave Overpressure Peak Measurement Method Based on Equilateral Ternary Array". Sensors 24, n.º 6 (14 de março de 2024): 1860. http://dx.doi.org/10.3390/s24061860.
Texto completo da fonteHou, Qingmin, Liang Ren, Wenling Jiao, Pinghua Zou e Gangbing Song. "An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform". Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/278794.
Texto completo da fonteZienkiewicz, Aleksandra, Michelle Favre, Hany Ferdinando, Stephanie Iring, Jorge Serrador e Teemu Myllylä. "Blood pressure wave propagation—a multisensor setup for cerebral autoregulation studies". Physiological Measurement 42, n.º 11 (1 de novembro de 2021): 115007. http://dx.doi.org/10.1088/1361-6579/ac3629.
Texto completo da fonteQiu, Xiao, Jue Ding, Zhong Jie Wang e Pei Feng Weng. "The Similarity Law of Internal-Blast Wave Propagation in the Concrete". Advanced Materials Research 1065-1069 (dezembro de 2014): 1143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.1065-1069.1143.
Texto completo da fonteZhang, Haotian, Linjian Ma, Zongmu Luo e Ning Zhang. "Wave Attenuation and Dispersion in a 6 mm Diameter Viscoelastic Split Hopkinson Pressure Bar and Its Correction Method". Shock and Vibration 2020 (16 de novembro de 2020): 1–10. http://dx.doi.org/10.1155/2020/8888445.
Texto completo da fonteNurprasetio, Ignatius Pulung, Bentang Arief Budiman, Farid Triawan e Muhammad Hafid. "Measurement of pressure wave speed in stainless-steel pipe generated by water hammer". MATEC Web of Conferences 197 (2018): 08020. http://dx.doi.org/10.1051/matecconf/201819708020.
Texto completo da fonteResch, Janelle, Lilia Krivodonova e John Vanderkooy. "A Two-Dimensional Study of Finite Amplitude Sound Waves in a Trumpet Using the Discontinuous Galerkin Method". Journal of Computational Acoustics 22, n.º 03 (16 de julho de 2014): 1450007. http://dx.doi.org/10.1142/s0218396x14500076.
Texto completo da fonteCheng, Z. Q., J. R. Crandall e W. D. Pilkey. "Wave Dispersion and Attenuation in Viscoelastic Split Hopkinson Pressure Bar". Shock and Vibration 5, n.º 5-6 (1998): 307–15. http://dx.doi.org/10.1155/1998/906291.
Texto completo da fonteXu, Min, Melad Olaimat, Tao Tang, Omar M. Ramahi, Maged Aldhaeebi, Zhu Jin e Ming Zhu. "Numerical Modeling of the Radio Wave Over-the-Horizon Propagation in the Troposphere". Atmosphere 13, n.º 8 (27 de julho de 2022): 1184. http://dx.doi.org/10.3390/atmos13081184.
Texto completo da fonteChen, Jiangping, Weijun Tao, Shi Huan e Chong Xu. "Data processing of wave propagation in viscoelastic split Hopkinson pressure bar". AIP Advances 12, n.º 4 (1 de abril de 2022): 045210. http://dx.doi.org/10.1063/5.0083888.
Texto completo da fonteZhu, X., W. B. Ye, T. Y. Li e C. Chen. "The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method". Ocean Engineering 58 (janeiro de 2013): 22–26. http://dx.doi.org/10.1016/j.oceaneng.2012.09.008.
Texto completo da fonteQiu, Hua, Zheng Su e Cha Xiong. "Experimental investigation on multi-cycle two-phase spiral pulse detonation tube of two configurations". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 11 (4 de dezembro de 2018): 4166–75. http://dx.doi.org/10.1177/0954410018817455.
Texto completo da fonteZhou, Changlong, Yingjun Li, Guicong Wang e Xue Yang. "Array model of shock pressure sensor for shooting point detection". MATEC Web of Conferences 355 (2022): 01027. http://dx.doi.org/10.1051/matecconf/202235501027.
Texto completo da fontePan, Jiajia, e Hung Tao Shen. "Tsunami Intrusion and River Ice Movement". Water 11, n.º 6 (20 de junho de 2019): 1290. http://dx.doi.org/10.3390/w11061290.
Texto completo da fonteLiu, Xinying, e David F. Fletcher. "Verification of fluid-structure interaction modelling for wave propagation in fluid-filled elastic tubes". Journal of Algorithms & Computational Technology 17 (janeiro de 2023): 174830262311597. http://dx.doi.org/10.1177/17483026231159793.
Texto completo da fonteZheng, Zhixia, Limei Bai e Shaoquan Li. "Blood Pressure Model Based on Hybrid Feature Convolution Neural Network in Promoting Rehabilitation of Patients with Hypertensive Intracerebral Hemorrhage". Computational and Mathematical Methods in Medicine 2021 (7 de dezembro de 2021): 1–8. http://dx.doi.org/10.1155/2021/1980408.
Texto completo da fonteZhao, Yang, Zhenghan Peng, Shuyuan Kong, Pinghua Yang e Xiao Wang. "Simulation of ultrasonic characterization for the microstructure of titanium alloy". Journal of Physics: Conference Series 2775, n.º 1 (1 de junho de 2024): 012003. http://dx.doi.org/10.1088/1742-6596/2775/1/012003.
Texto completo da fonteLiang, Shin-Jye, Chih-Chieh Young, Chi Dai, Nan-Jing Wu e Tai-Wen Hsu. "Simulation of Ocean Circulation of Dongsha Water Using Non-Hydrostatic Shallow-Water Model". Water 12, n.º 10 (12 de outubro de 2020): 2832. http://dx.doi.org/10.3390/w12102832.
Texto completo da fonteGROBY, JEAN-PHILIPPE, e CHRYSOULA TSOGKA. "A TIME DOMAIN METHOD FOR MODELING VISCOACOUSTIC WAVE PROPAGATION". Journal of Computational Acoustics 14, n.º 02 (junho de 2006): 201–36. http://dx.doi.org/10.1142/s0218396x06003001.
Texto completo da fonteCalvo, Lucas, Diana De Padova, Michele Mossa e Paulo Rosman. "Non-Hydrostatic Discontinuous/Continuous Galerkin Model for Wave Propagation, Breaking and Runup". Computation 9, n.º 4 (14 de abril de 2021): 47. http://dx.doi.org/10.3390/computation9040047.
Texto completo da fonteXie, Biting, Xiuli Zhang, Hao Wang, Yuyong Jiao e Fei Zheng. "Investigations into the Rock Dynamic Response under Blasting Load by an Improved DDA Approach". Advances in Civil Engineering 2021 (8 de fevereiro de 2021): 1–10. http://dx.doi.org/10.1155/2021/8827022.
Texto completo da fonteAntsiperov, V. E., A. S. Bugaev, M. V. Danilychev e G. K. Mansurov. "Method for estimation of the pulse wave propagation velocity by a manual pneumatic arterial pressure sensor". CARDIOMETRY, n.º 18 (18 de maio de 2021): 38–43. http://dx.doi.org/10.18137/cardiometry.2020.18.3843.
Texto completo da fonteLin, Shu-Chao, Qing-Zhao Hou, Anna Derlatka, Shan Gao, Jin-Jun Kang e Xiao-Lei Dong. "The Study on the Shock Wave Propagation Rule of a Gas Explosion in a Gas Compartment". Shock and Vibration 2022 (6 de janeiro de 2022): 1–17. http://dx.doi.org/10.1155/2022/5938950.
Texto completo da fonteQaisar, Hayat, Li Yun Fan, En Zhe Song, Xiu Zhen Ma, Bing Qi Tian e Naeim Farouk. "Study of Effect of Diesel Fuel Properties on Pressure Wave Profile". Applied Mechanics and Materials 681 (outubro de 2014): 19–22. http://dx.doi.org/10.4028/www.scientific.net/amm.681.19.
Texto completo da fonteLe, Thi Thanh Giang, Kyeong Sik Jang, Kwan-Sup Lee e Jaiyoung Ryu. "Numerical Investigation of Aerodynamic Drag and Pressure Waves in Hyperloop Systems". Mathematics 8, n.º 11 (6 de novembro de 2020): 1973. http://dx.doi.org/10.3390/math8111973.
Texto completo da fonteKim, Young Kook, Kazuyuki Hokamoto e Shigeru Itoh. "A Study on the Consolidation of Cu, Ni / Graphite Powder Using Shock Compaction Method". Materials Science Forum 566 (novembro de 2007): 345–50. http://dx.doi.org/10.4028/www.scientific.net/msf.566.345.
Texto completo da fonteYang, Fan, Liugang Li, Zhimin Li e Pengbo Wang. "Numerical Simulation of Acoustic Wave Generated by DC Corona Discharge Based on the Shock Wave Theory". Applied Sciences 13, n.º 16 (15 de agosto de 2023): 9251. http://dx.doi.org/10.3390/app13169251.
Texto completo da fonteKIMURA, Yuki, e Eijiro INAMURA. "A Method for Estimating the Direction of Shock Wave Propagation Using a Pressure Transducer". Proceedings of Conference of Kanto Branch 2024.30 (2024): 14I05. http://dx.doi.org/10.1299/jsmekanto.2024.30.14i05.
Texto completo da fonteYu, Jin, Zehan Liu, Ze He, Xianqi Zhou e Jinbi Ye. "Fluctuation Characteristic Test of Oblique Stress Waves in Infilled Jointed Rock and Study of the Analytic Method". Advances in Civil Engineering 2020 (11 de janeiro de 2020): 1–12. http://dx.doi.org/10.1155/2020/7924742.
Texto completo da fonteLeconte, Roman, Jean-Camille Chassaing, François Coulouvrat e Régis Marchiano. "Propagation of classical and low booms through kinematic turbulence with uncertain parameters". Journal of the Acoustical Society of America 151, n.º 6 (junho de 2022): 4207–27. http://dx.doi.org/10.1121/10.0011771.
Texto completo da fonteYan, Chenglong, Chen Shu, Jiafeng Zhao, Lingyu Su, Yiheng Tong, Qiaofeng Xie e Wei Lin. "Influences of thermal physical property parameters on operating characteristics of simulated rotating detonation ramjet fueled by C12H23". AIP Advances 12, n.º 11 (1 de novembro de 2022): 115309. http://dx.doi.org/10.1063/5.0101939.
Texto completo da fonteZdeshchyts, A. V., e V. M. Zdeshchyts. "Propagation of elastic waves in cross-sectionally heterogeneous rods". IOP Conference Series: Earth and Environmental Science 1415, n.º 1 (1 de dezembro de 2024): 012081. https://doi.org/10.1088/1755-1315/1415/1/012081.
Texto completo da fonteJia, Fan, Hongyang Cheng, Sihong Liu e Vanessa Magnanimo. "Elastic wave velocity and attenuation in granular material". EPJ Web of Conferences 249 (2021): 11001. http://dx.doi.org/10.1051/epjconf/202124911001.
Texto completo da fonteChukkol, Y. B., I. Bello e M. Abdullahi. "Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 33, n.º 1 (março de 2023): 171–94. http://dx.doi.org/10.35634/vm230112.
Texto completo da fonte