Artigos de revistas sobre o tema "Predictive uncertainty quantification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Predictive uncertainty quantification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems". Energies 15, n.º 17 (1 de setembro de 2022): 6379. http://dx.doi.org/10.3390/en15176379.
Texto completo da fonteCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo Schuller, Roberto B. Seixas, Roberto I. Oliveira e Paulo Orenstein. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Texto completo da fonteLew, Jiann-Shiun, e Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification". Journal of Guidance, Control, and Dynamics 35, n.º 3 (maio de 2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Texto completo da fonteKarimi, Hamed, e Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction". Proceedings of the AAAI Symposium Series 1, n.º 1 (3 de outubro de 2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Texto completo da fonteAkitaya, Kento, e Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)". Water 16, n.º 3 (28 de janeiro de 2024): 423. http://dx.doi.org/10.3390/w16030423.
Texto completo da fonteSingh, Rishabh, e Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models". Neural Computation 33, n.º 5 (13 de abril de 2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Texto completo da fonteChen, Peng, e Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification". Communications in Computational Physics 14, n.º 4 (outubro de 2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Texto completo da fonteOmagbon, Jericho, John Doherty, Angus Yeh, Racquel Colina, John O'Sullivan, Julian McDowell, Ruanui Nicholson, Oliver J. Maclaren e Michael O'Sullivan. "Case studies of predictive uncertainty quantification for geothermal models". Geothermics 97 (dezembro de 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Texto completo da fonteNitschke, C. T., P. Cinnella, D. Lucor e J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity". Journal of Fluids and Structures 73 (agosto de 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Texto completo da fonteMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li e M. Frenklach. "Uncertainty Quantification in Chemical Modeling". Eurasian Chemico-Technological Journal 20, n.º 1 (31 de março de 2018): 33. http://dx.doi.org/10.18321/ectj706.
Texto completo da fonteAlbi, Giacomo, Lorenzo Pareschi e Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models". Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Texto completo da fonteKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel e Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation". International Journal of Computing and Engineering 5, n.º 5 (27 de maio de 2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Texto completo da fonteGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification". Science and Technology for the Built Environment 28, n.º 5 (28 de maio de 2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Texto completo da fonteDelottier, Hugo, John Doherty e Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model". Geoscientific Model Development 16, n.º 14 (26 de julho de 2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Texto completo da fonteGerber, Eric A. E., e Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance". Journal of Quantitative Analysis in Sports 17, n.º 3 (6 de janeiro de 2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Texto completo da fonteWells, S., A. Plotkowski, J. Coleman, M. Rolchigo, R. Carson e M. J. M. Krane. "Uncertainty quantification for computational modelling of laser powder bed fusion". IOP Conference Series: Materials Science and Engineering 1281, n.º 1 (1 de maio de 2023): 012024. http://dx.doi.org/10.1088/1757-899x/1281/1/012024.
Texto completo da fonteMa, Junwei, Xiao Liu, Xiaoxu Niu, Yankun Wang, Tao Wen, Junrong Zhang e Zongxing Zou. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique". International Journal of Environmental Research and Public Health 17, n.º 13 (3 de julho de 2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Texto completo da fonteFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis e Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences". Science Advances 6, n.º 42 (outubro de 2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Texto completo da fonteBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins". Computational Biology and Bioinformatics 2, n.º 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Texto completo da fonteRiley, Matthew E., e Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation". Computers & Structures 89, n.º 11-12 (junho de 2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Texto completo da fonteZgraggen, Jannik, Gianmarco Pizza e Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data". PHM Society European Conference 7, n.º 1 (29 de junho de 2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Texto completo da fonteKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis e Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines". PHM Society European Conference 7, n.º 1 (29 de junho de 2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Texto completo da fonteSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim e Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques". SPE Journal 17, n.º 01 (31 de janeiro de 2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Texto completo da fonteOlalusi, Oladimeji B., e Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures". Applied Sciences 10, n.º 19 (4 de outubro de 2020): 6955. http://dx.doi.org/10.3390/app10196955.
Texto completo da fonteDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim e B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method". Transportation Research Record: Journal of the Transportation Research Board 2674, n.º 4 (13 de março de 2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Texto completo da fonteDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts e D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences Discussions 11, n.º 9 (10 de setembro de 2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Texto completo da fonteKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration". Knowledge 4, n.º 4 (25 de setembro de 2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Texto completo da fonteCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Texto completo da fonteCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Texto completo da fonteSlavinskaya, N. A., M. Abbasi, J. H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li et al. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion". Energy & Fuels 31, n.º 3 (14 de fevereiro de 2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Texto completo da fonteTran, Vinh Ngoc, e Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations". Stochastic Environmental Research and Risk Assessment 33, n.º 7 (julho de 2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Texto completo da fonteWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel e Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output". SIAM Review 66, n.º 1 (fevereiro de 2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Texto completo da fonteHeringhaus, Monika E., Yi Zhang, André Zimmermann e Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference". Sensors 22, n.º 14 (20 de julho de 2022): 5408. http://dx.doi.org/10.3390/s22145408.
Texto completo da fonteIncorvaia, Gabriele, Darryl Hond e Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures". Electronics 13, n.º 5 (29 de fevereiro de 2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Texto completo da fonteMa, Junwei, Xiaoxu Niu, Huiming Tang, Yankun Wang, Tao Wen e Junrong Zhang. "Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach". Complexity 2020 (28 de janeiro de 2020): 1–15. http://dx.doi.org/10.1155/2020/2624547.
Texto completo da fonteNamadchian, Ali, Mehdi Ramezani e Yuanyuan Zou. "Uncertainty quantification of model predictive control for nonlinear systems with parametric uncertainty using hybrid pseudo-spectral method". Cogent Engineering 6, n.º 1 (1 de janeiro de 2019): 1691803. http://dx.doi.org/10.1080/23311916.2019.1691803.
Texto completo da fonteChen, Ming, Xinhu Zhang, Kechun Shen e Guang Pan. "Sparse Polynomial Chaos Expansion for Uncertainty Quantification of Composite Cylindrical Shell with Geometrical and Material Uncertainty". Journal of Marine Science and Engineering 10, n.º 5 (14 de maio de 2022): 670. http://dx.doi.org/10.3390/jmse10050670.
Texto completo da fonteShrestha, Durga L., Nagendra Kayastha, Dimitri Solomatine e Roland Price. "Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method". Journal of Hydroinformatics 16, n.º 1 (25 de julho de 2013): 95–113. http://dx.doi.org/10.2166/hydro.2013.242.
Texto completo da fonteYe, Yanan, Alvaro Ruiz-Martinez, Peng Wang e Daniel M. Tartakovsky. "Quantification of Predictive Uncertainty in Models of FtsZ ring assembly in Escherichia coli". Journal of Theoretical Biology 484 (janeiro de 2020): 110006. http://dx.doi.org/10.1016/j.jtbi.2019.110006.
Texto completo da fonteHasselman, Timothy, e George Lloyd. "A top-down approach to calibration, validation, uncertainty quantification and predictive accuracy assessment". Computer Methods in Applied Mechanics and Engineering 197, n.º 29-32 (maio de 2008): 2596–606. http://dx.doi.org/10.1016/j.cma.2007.07.031.
Texto completo da fonteXie, Shulian, Feng Xue, Weimin Zhang e Jiawei Zhu. "Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life". Machines 11, n.º 10 (25 de setembro de 2023): 923. http://dx.doi.org/10.3390/machines11100923.
Texto completo da fonteZhu, Hong-Yu, Gang Wang, Yi Liu e Ze-Kun Zhou. "Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing". International Journal of Modern Physics B 34, n.º 14n16 (20 de abril de 2020): 2040083. http://dx.doi.org/10.1142/s0217979220400834.
Texto completo da fonteBoso, F., e D. M. Tartakovsky. "Learning on dynamic statistical manifolds". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, n.º 2239 (julho de 2020): 20200213. http://dx.doi.org/10.1098/rspa.2020.0213.
Texto completo da fonteDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts e D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences 19, n.º 7 (23 de julho de 2015): 3181–201. http://dx.doi.org/10.5194/hess-19-3181-2015.
Texto completo da fontePandey, Deep Shankar, e Qi Yu. "Evidential Conditional Neural Processes". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junho de 2023): 9389–97. http://dx.doi.org/10.1609/aaai.v37i8.26125.
Texto completo da fonteDavis, Gary A., e Christopher Cheong. "Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions". Transportation Research Record: Journal of the Transportation Research Board 2673, n.º 11 (16 de junho de 2019): 583–92. http://dx.doi.org/10.1177/0361198119851747.
Texto completo da fonteGupta, Ishank, Deepak Devegowda, Vikram Jayaram, Chandra Rai e Carl Sondergeld. "Machine learning regressors and their metrics to predict synthetic sonic and mechanical properties". Interpretation 7, n.º 3 (1 de agosto de 2019): SF41—SF55. http://dx.doi.org/10.1190/int-2018-0255.1.
Texto completo da fonteGuerra, Gabriel, Fernando A. Rochinha, Renato Elias, Daniel de Oliveira, Eduardo Ogasawara, Jonas Furtado Dias, Marta Mattoso e Alvaro L. G. A. Coutinho. "UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE". International Journal for Uncertainty Quantification 2, n.º 1 (2012): 53–71. http://dx.doi.org/10.1615/int.j.uncertaintyquantification.v2.i1.50.
Texto completo da fontePeltz, James J., Dan G. Cacuci, Aurelian F. Badea e Madalina C. Badea. "Predictive Modeling Applied to a Spent Fuel Dissolver Model—II: Uncertainty Quantification and Reduction". Nuclear Science and Engineering 183, n.º 3 (1 de julho de 2016): 332–46. http://dx.doi.org/10.13182/nse15-99.
Texto completo da fonteKasiviswanathan, K. S., e K. P. Sudheer. "Quantification of the predictive uncertainty of artificial neural network based river flow forecast models". Stochastic Environmental Research and Risk Assessment 27, n.º 1 (28 de junho de 2012): 137–46. http://dx.doi.org/10.1007/s00477-012-0600-2.
Texto completo da fonte